首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theory is developed of image formation with an X-ray lens that consists of a large number of elements. Each element has a biconcave parabolic profile and weakly refracts an X-ray beam. Since such a lens can have a relatively large length comparable to the focal length, the thin-lens approximation is inapplicable. An exact expression for the propagator of a continuously refractive lens is derived that describes the transfer of radiation through a refractive parabolic medium. We calculate the image propagator that describes the focusing of a parallel beam and the image transfer (the focusing of a microobject), as well as the Fourier transform of the transmission function for a microobject with a lens, is calculated. The effective aperture of an X-ray lens is completely determined by the absorption of radiation and does not depend on its geometrical cross-sectional sizes. If we write the complex refractive index as n=1? δ+iβ, then the beam diameter at the focus is approximately a factor of 0.8β/δ smaller than the diameter of the effective aperture, with the index depending only slightly on the wavelength. A continuously refractive lens has no aberrations in the sense that all of the rays that passed through the lens aperture are focused at a single point. The lens can focus radiation inside it and has the properties of a waveguide; i.e., it can reconstruct the beam structure for some lengths to within the absorption-caused distortions. Nonuniform X-ray absorption in the lens leads to the interesting visualization effect of transparent microobjects when their image is focused. In this case, the phase shift gradient produced by the microobject is imaged. We discuss the properties of the Fourier transform pertaining to the absorption of radiation in the lens.  相似文献   

2.
We report a 350-fold enhancement of ultra-short-pulse-excited two-photon fluorescence (TPF) using a resonant double grating waveguide structure (DGWS). These structures show vanishing transmission and maximum reflection under resonance conditions, i.e. specific wavelength, polarisation and angular orientation of the incident light. This guided mode phenomenon is characterised by a large field enhancement inducing an enormous TPF signal of fluorescent molecules at the waveguide surface, as compared to direct non-resonant excitation. We demonstrate that high spectral acceptance for ultra-short pulses with broad spectral bandwidths can be achieved by a specifically designed DGWS, and that neither beam focussing nor high laser power is necessary for TPF excitation. Due to the high enhancement of more than two orders of magnitude, DGWS can be considered as a powerful platform for TPF applications such as biosensing and microarray technology. PACS 42.62.Be; 42.79.Dj; 42.79.Gn  相似文献   

3.
Light can tunnel through a high-reflectivity dielectric multilayer film when a photonic-crystal-type defect is introduced in the structure, which is useful for optical signal processing. We consider chirped structures with a defect in layer thickness for which high reflectivity is achieved over a broad wavelength range except within a narrow spectral window. The useful transmission window, while it shifts toward shorter wavelengths as the angle of incidence of the light beam is increased, does not, in general, survive; i.e., transmission disappears progressively. We show that wide angular range operation can, however, be achieved by a proper design of the chirped structure. Analytical expressions for the design parameters are derived on the basis of a semi-infinite photonic crystal model. Theoretical reflectance spectra of defect SiO2/TiO2 chirped multilayer films are presented and discussed in terms of the dispersion of the electromagnetic radiation modes of the finite photonic crystal. These devices offer a simple way to mechanically tune (through inclination of the film) the wavelength transmitted from a fixed white-light beam.  相似文献   

4.
Properties of the characteristic X-ray radiation excited in quartz under 100-keV proton bombardment have been experimentally investigated. The measured intensity of SiK α radiation for quartz is higher than that for pure silicon by three orders of magnitude. An afterglow from the target is observed for hundreds of seconds after the ion beam is turned off. This enhanced radiation intensity and the afterglow duration have been measured as a function of the beam current, beam grazing angle, and pressure in the chamber. The measurement data indicate that the enhanced insulator radiation is caused by the accumulation and discharge of a positive charge formed in a dielectric and on its surface under exposure to an ion beam.  相似文献   

5.
We studied electromagnetic beam reflection from layered structures that include materials with negative refraction. Excitation of leaky surface waves leads to the formation of anomalous lateral shifts in the reflected beams with single or double peak structures. The presence of reasonable losses within material with negative refraction, besides significant influence on manifestation of the giant lateral shifts, can lead to their total suppression and anomalously high absorption of the incident radiation. If, in addition to the resonant excitation of leaky surface waves, radiation inflow exactly compensates their irreversible damping, total absorption of the incoming radiation can be achieved for moderately wide beams.  相似文献   

6.
The optical design of a beam splitter that has a 50/50 splitting ratio regardless of the polarization is presented. The non-polarizing beam splitter (NPBS) is based on the fused-silica rectangular transmission gratings with high intensity tolerance. The modal method has been used to estimate the effective index of the modes excited in the grating region for TE and TM polarizations. If a phase difference equals an odd multiples of π/2 for the first two modes (i.e. modes 0 and 1), the incident light will be diffracted into the 0 and ?1 orders with about 50% and 50% diffraction efficiency for TM and TE polarizations, respectively.  相似文献   

7.
李春芳  张妍  陈玺  朱绮彪 《中国物理 B》2008,17(5):1758-1768
It is shown that a Gaussian light beam transmitting through a planar thin dielectric slab in the air undergoes four different effects, i.e. lateral Goos-Hanchen-like (GHL) displacement, angular deflection, width modification and longitudinal focal shift as compared with the results predicted by geometrical optics. According to the Taylor expansion of the exponent of transmission coefficient when expressed as an exponential form, the lateral GHL displacement and the angular deflection are the first-order effects and can be negative or positive. The width modification and the longitudinal focal shift are the second-order effects and can also be positive or negative. Owing to the waist-width dependent term, the non-geometrical effects of transmitted beam are not identical with the non-specular effects of reflected beam. The conditions for the validity of those effects are suggested and numerical simulations are also given.  相似文献   

8.
We demonstrate a dual-beam-reflection phenomenon for a Gaussian beam illuminating at a Kretschmann configuration composed of a photonic-crystal-made prism and a dielectric waveguide. One reflection beam has a positive shift and the other has a negative shift. The finite-difference time-domain (FDTD) shows that the specific phenomenon takes place only when the corresponding quasi-guided mode supported in the Kretschmann configuration is excited. Field profile of the quasi-guided mode demonstrates a strong localized stationary field in the dielectric waveguide. We found that the maximum positive lateral shift (LS) is 14.27a (where a is the lattice constant), corresponding to 3.07 times of the incident wavelength, which is 0.7135 times of the beam waist and much larger than that in some previous reports.  相似文献   

9.
The propagation of a radiation beam in a medium whose velocity varies in the direction transverse to the axis of the beam is considered. It is shown that, under these conditions, the Fresnel-Fizeau effect of partial entrainment of light leads to focusing of the beam and to the possibility of the waveguide propagation of light. The corresponding waveguides and lenses have the property of nonreciprocity; i.e., their characteristics change with the reversal of the direction of propagation. The estimates obtained show the feasibility of observing the effect for optical radiation.  相似文献   

10.
We propose a model of a tunable laser based on a tunnel-coupled waveguide semiconductormetamaterial structure. The waveguide semiconductor channel has a positive refractive index and a high Kerr nonlinearity coefficient. In the frequency range under investigation, the channel formed by the magnetoactive metamaterial is characterized by a negative refractive index. Computer simulation is used for investigating the peculiarities of generation of microwave radiation under pumping due to modulated instability in the semiconductor channel and a distributed feedback. The generation frequency is controlled using the dependence of the refractive index of the metamaterial on the external magnetic field.  相似文献   

11.
We consider the anode plasma structure in a gas discharge with density of neutral atoms (neutrals) depleted by strong ionization. We obtain analytical solutions of the quasi-neutrality equation for the potential distribution and a condition for the existence of anode plasma in the one-dimensional case for arbitrary potential dependences of the neutral depletion frequency and the electron density. We consider the special cases of a constant neutral depletion frequency, ionization by Maxwellian electrons, and ionization by an intense electron beam under the conditions of collisionless ion motion and Boltzmann thermal electron distribution. The solutions for the first two cases at zero depletion parameter, i.e., at constant gas density, match those obtained in [1] by a power series expansion. In the case of ionization by Maxwellian electrons, the formation of anode plasma at reasonable working-gas flow rates is shown to be possible only at a fairly high electron temperature (if, e.g., xenon is used as the working gas, then T e ≥ 5 eV). Steady-state solutions of the quasi-neutrality equation under ionization by an intense electron beam exist only if the ratio of the electron beam density to the maximum thermal electron density does not exceed a certain limiting value.  相似文献   

12.
We have used a technique for studying the effect of a laser beam impinging on a thin foil using an X-ray laser as an X–UV backlighter, i.e. X–UV laser radiography. This technique allows us to measure small fractional variations in the transmission of the foil. We present an overview of measurements of imprinted thickness modulation and growth due to a 0.53 μm wavelength drive beam incident on a 2 μm thick Al foil using a germanium X-ray laser. Initial imprint is determined for single optical modes. Moreover the change in opacity is measured in a strongly coupled, highly compressed Al foil.  相似文献   

13.
We demonstrate a semiconducting material, TiO2−δ, with magnetism up to 880 K, without the introduction of magnetic ions. The magnetism in these films stems from the controlled introduction of anion defects from both the film–substrate interface as well as processing under a deficient oxygen atmosphere. First-principle band structure calculations indicate that the exchange between Ti cations mediated by an oxygen anion is positive, i.e., ferromagnetic, whereas the exchange between cations via a vacancy is negative, i.e., ferrimagnetic. It is likely that both the mechanisms are active in this system. This represents a new and promising approach in the search for room-temperature magnetic semiconductors.  相似文献   

14.
We report our experimental results on two-dimensional left-handed metamaterials (LHM) exhibiting negative refraction and subwavelength imaging. Transmission and reflection spectra of LHM are studied and a left-handed transmission band is observed at the frequencies where both dielectric permittivity and magnetic permeability are negative. Impedance matching is verified both with the experiments and simulations. The two-dimensional LHM structure is verified to have a negative refractive index. We employed three different methods to observe negative refraction; refraction through prism-shaped LHM, beam shifting method, and phase shift experiments. We further demonstrated subwavelength imaging and resolution using LHM superlenses. The effect of thickness on the resolving power is investigated experimentally.  相似文献   

15.
We study the transmission properties of light through the symmetric Fibonacci photonic multilayers, i.e, a binary one-dimensional quasiperiodic structure, made up of both positive (SiO2) and negative refractive index materials with a mirror symmetry. These spectra are calculated by using a theoretical model based on the transfer matrix approach for normal incidence geometry, in which many perfect transmission peaks (the transmission coefficients are equal to the unity) are numerically obtained. Besides, the transmission coefficient exhibits a six-cycle self-similar behavior with respect to the generation number of the Fibonacci sequence.  相似文献   

16.
Zinc telluride thin films with different thicknesses have been deposited by electron beam gun evaporation system onto glass substrates at room temperature. X-ray and electron diffraction techniques have been employed to determine the crystal structure and the particle size of the deposited films. The stoichiometry of the deposited films was confirmed by means of energy-dispersive X-ray spectrometry. The optical transmission and reflection spectrum of the deposited films have been recorded in the wavelength optical range 450-2500 nm. The variation of the optical parameters, i.e. refractive index, n, extinction coefficient, k, with thickness of the deposited films has been investigated. The refractive index dispersion in the transmission and low absorption region is adequately described by the single-oscillator model, whereby the values of the oscillator strength, oscillator position, dispersion parameter as well as the high-frequency dielectric constant were calculated for different film thickness. Graphical representations of the surface and volume energy loss function were also presented.  相似文献   

17.
Using first-principles atomistic simulations, we study the response of atomically thin layers of transition metal dichalcogenides (TMDs)-a new class of two-dimensional inorganic materials with unique electronic properties-to electron irradiation. We calculate displacement threshold energies for atoms in 21 different compounds and estimate the corresponding electron energies required to produce defects. For a representative structure of MoS_{2}, we carry out high-resolution transmission electron microscopy experiments and validate our theoretical predictions via observations of vacancy formation under exposure to an 80?keV electron beam. We further show that TMDs can be doped by filling the vacancies created by the electron beam with impurity atoms. Thereby, our results not only shed light on the radiation response of a system with reduced dimensionality, but also suggest new ways for engineering the electronic structure of TMDs.  相似文献   

18.
The design of a 57Fe Synchrotron Mössbauer Source (SMS) for energy‐domain Mössbauer spectroscopy using synchrotron radiation at the Nuclear Resonance beamline (ID18) at the European Synchrotron Radiation Facility is described. The SMS is based on a nuclear resonant monochromator employing pure nuclear reflections of an iron borate (57FeBO3) crystal. The source provides 57Fe resonant radiation at 14.4 keV within a bandwidth of 15 neV which is tunable in energy over a range of about ±0.6 µeV. In contrast to radioactive sources, the beam of γ‐radiation emitted by the SMS is almost fully resonant and fully polarized, has high brilliance and can be focused to a 10 µm × 5 µm spot size. Applications include, among others, the study of very small samples under extreme conditions, for example at ultrahigh pressure or combined high pressure and high temperature, and thin films under ultrahigh vacuum. The small cross section of the beam and its high intensity allow for rapid collection of Mössbauer data. For example, the measuring time of a spectrum for a sample in a diamond anvil cell at ~100 GPa is around 10 min, whereas such an experiment with a radioactive point source would take more than one week and the data quality would be considerably less. The SMS is optimized for highest intensity and best energy resolution, which is achieved by collimation of the incident synchrotron radiation beam and thus illumination of the high‐quality iron borate crystal within a narrow angular range around an optimal position of the rocking curve. The SMS is permanently located in an optics hutch and is operational immediately after moving it into the incident beam. The SMS is an in‐line monochromator, i.e. the beam emitted by the SMS is directed almost exactly along the incident synchrotron radiation beam. Thus, the SMS can be easily utilized with all existing sample environments in the experimental hutches of the beamline. Owing to a very strong suppression of electronic scattering for pure nuclear reflections (~10?9), SMS operation does not required any gating of the prompt electronic scattering. Thus, the SMS can be utilized in any mode of storage ring operation.  相似文献   

19.
We calculate the radiation force that is exerted by a focused continuous-wave Gaussian beam of wavelength λ on a non-absorbing nonlinear particle of radius a ? 50λ/π. The refractive index of the mechanically-rigid particle is proportional to the incident intensity according to the electro-optic Kerr effect. The force consists of two components representing the contributions of the electromagnetic field gradient and the light scattered by the Kerr particle. The focused intensity distribution is determined using expressions for the six electromagnetic components that are corrected to the fifth order in the numerical aperture (NA) of the focusing objective lens. We found that for particles with a < λ/21.28, the trapping force is dominated by the gradient force and the axial trapping force is symmetric about the geometrical focus. The two contributions are comparable with larger particles and the axial trapping force becomes asymmetric with its zero location displaced away from the focus and towards the beam propagation direction. We study the trapping force behavior versus incident beam power, NA, λ, and relative refractive index between the surrounding liquid and the particle. We also examine the confinement of a Kerr particle that exhibits Brownian motion in a focused beam. Numerical results show that the Kerr effect increases the trapping force strength and significantly improves the confinement of Brownian particles.  相似文献   

20.
We show a dual-beam-reflection phenomenon for a Gaussian beam illuminating a hybrid structure of a dielectric waveguide and photonic crystal (WG-PC) inside the photonic band gap by numerical simulations. One reflection beam has a giant negative lateral shift, but the other has a positive lateral shift. The finite-difference time-domain (FDTD) simulations show that this phenomenon has a time delay effect and comes from the leaky surface mode of the hybrid structure. Field profile of the leaky mode demonstrates a strong localized stationary field in the higher dielectric medium. Furthermore, the maximum lateral shift is almost two times of the waist of the incident beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号