首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the optical effects on the characteristics of GaAs FinFET with Gaussian doping profile in the vertical direction of the channel considering quantum mechanical effects (QME) have been theoretically examined and analyzed. The device characteristics are obtained using self-consistent solution of 3D Poisson–Schrödinger equations using interpolating wavelet method and Simpson's one-third rule. This method provides more accurate results by dynamically adjusting the computational mesh and scales the CPU time linearly with the number of mesh points using polynomial interpolation, hence reducing the numerical cost. The results obtained are compared with uniformly doped Si FinFET photodetector characteristics and used to examine the performance of the device for its suitable use as a photodetector in Opto-Electronic Integrated Circuit (OEIC) receivers.  相似文献   

2.
In this paper, the potential benefit of short channel triple material double gate (TM-DG) FinFET on the optical performance characteristics considering quantum mechanical effects has been theoretically examined and analyzed. The device characteristics are obtained from the self-consistent solution of 3D Poisson–Schrödinger equation using Leibmann's iteration method and provided the reasons for improved performance. The drain and transfer characteristics, electric field, transconductance and mobility of the device have been estimated and the results were compared with the device simulator results. The effect of different length ratios of three channel regions related to three different materials of TM-DG FinFET structure on the optical characteristics have also been discussed. The model is purely a physics based one and overcomes the major limitations of the existing 2D/3D analytical models by providing a more accurate result. The results obtained for dark and illuminated conditions are used to examine the performance of the device for its suitable use as a photodetector.  相似文献   

3.
Third generation terrestrial interferometric gravitational wave detectors will likely require significant advances in laser and optical technologies to reduce two of the main limiting noise sources: thermal noise due to mirror coatings and quantum noise arising from a combination of shot noise and radiation pressure noise. Increases in laser power and possible changes of the operational wavelength require new high power laser sources and new electro-optic modulators and Faraday isolators. Squeezed light can be used to further reduce the quantum noise while nano-structured optical components can be used to reduce or eliminate mirror coating thermal noise as well as to implement all-reflective interferometer configurations to avoid thermal effects in mirror substrates. This paper is intended to give an overview on the current state-of-the-art and future trends in these areas of ongoing research and development.  相似文献   

4.
In this paper we report a theoretical analysis of a long wavelength photoconductive detector for characterizing and optimizing the device in respect of voltage responsivity, quantum efficiency, detectivity and noise equivalent power. The model has been applied to examine the potential of an n-type Hg0.77Cd0.23Te photoconductive detector for possible application in free space optical communication system operating at the atmospheric window near 9.6 μ m. In the present analysis we have taken into account all the major recombination mechanisms (e.g., Radiative, Auger, and Shockley-Read-Hall types) including the effect of surface recombination at the interfaces that shape the characteristics of photoconductor. The results obtained on the basis of our analysis reveal that in the absence of surface recombination the device exhibits a peak quantum efficiency of 90%, a maximum detectivity of 108 MHz1/2/W at 77 K, a 3 dB bandwidth of 117.86 MHz and noise voltage of 5.4 × 10−6 V/Hz1/2. The sweep-out effect has been found to degrade the detectivity nearly by a factor of 10 at the same temperature and wavelength of operation. The estimated noise equivalent power of the photodetector is of the order of 10−9 W at 9.6 μm wavelength.  相似文献   

5.
受电子器件工作频率及功率的限制,传统电子学方法产生的噪声源的超噪比通常小于20 dB,针对这一问题,本文提出了一种基于非相干光拍频产生高超噪比宽带毫米波噪声技术.首先,用两个光滤波器对宽带放大自发辐射光源进行滤波整形.将获得的两束频率不同的放大自发辐射光耦合进入光电探测器进行拍频,从而产生电噪声信号.理论分析发现,通过...  相似文献   

6.
谐振腔增强型光电探测器的角度相关特性研究   总被引:1,自引:1,他引:0  
梁琨  杨晓红  杜云  吴荣汉 《光子学报》2003,32(5):637-640
采用MBE生长In0.3Ga0.7As/GaAs和GaInNAs/GaAs量子阱为有源区的器件结构材料,制备出工作在1060nm及1310nm波段的谐振腔增强型光电探测器.对谐振腔增强型光电探测器的空间角度相关特性进行了实验与物理分析,改变光束入射角度,器件谐振接收波长可在大范围调变.  相似文献   

7.
A thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and the broadband (8–12 μm) quantum well infrared photodetector (QWIP) focal plane array technology. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray light and large swath width. The configuration has the potential to be the optimal high resolution imaging spectroscopy solution for aerial and space remote sensing applications due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as thermal design trade-offs. The current design uses a single high power cryocooler which allows operation of the QWIP at 40 K with adequate temperature stability.Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz, opal, alunite). A comparison is made using data from the ASTER spectral library. The current single band (8–9 μm) testbed utilizes the high uniformity and operability of the QWIP array and shows excellent laboratory and field spectroscopic results.  相似文献   

8.
甚长波量子阱红外探测器光栅耦合的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
熊大元  曾勇  李宁  陆卫 《物理学报》2006,55(7):3642-3648
采用平面波展开的散射矩阵方法研究n型甚长波量子阱红外探测器的二维衍射光栅,并同时从实验方面研究了其红外透射光谱.研究表明,n型量子阱器件的光栅耦合是传输场和倏逝场共同作用的结果.对于n型量子阱红外探测器的光栅耦合,光栅周期、光栅深度和占空比三者之间相互影响;要达到好的光学耦合效果,需要根据量子阱器件的峰值探测波长选择合适的光栅参数. 关键词: n型量子阱红外探测器 二维光栅 光耦合  相似文献   

9.
低频标准真空涨落的测量   总被引:1,自引:0,他引:1       下载免费PDF全文
薛佳  秦际良  张玉驰  李刚  张鹏飞  张天才  彭堃墀 《物理学报》2016,65(4):44211-044211
采用自平衡零拍方案, 对低频段的标准量子真空涨落进行了测量. 实验确定了该系统的饱和光功率约为3.2 mW. 在10 Hz–400 kHz的频率范围内, 系统的共模抑制比平均为55 dB, 在100 Hz处高达63 dB, 对激光经典技术噪声具有很强的抑制作用. 当入射光功率为400 μ W 时, 真空涨落噪声达到11 dB. 此低频量子真空噪声探测系统可广泛应用于量子计量和量子光学等研究领域.  相似文献   

10.
Fin FET器件比主流CMOS技术表现出更多优势,如快速、高集成度、低功耗、多功能性和强扩展性,基于ISE TCAD,考虑迁移率、量子效应、载流子重组、辐射效应等的影响,建立了一种纳米Fin FET器件SEE的3D仿真模型。分析了工艺掺杂浓度、栅压、粒子能量、寄生电容及技术节点等对单粒子瞬态电流的影响,并探讨了其影响机制。基于此分析,找到了一些潜在的工艺加固技术,如降低源极掺杂浓度、增加漏极和衬底的掺杂浓度、减少粒子能量、降低栅压、优化寄生电容等。  相似文献   

11.
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 × 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEΔT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEΔT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEΔT, uniformity, operability, and modulation transfer functions of the 1024 × 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.  相似文献   

12.
Armchair graphene nanoribbons (A-GNRs) are an alternative material to use in novel infrared photodetectors, because of their tunable energy gap in the infrared spectrum, and their high quantum efficiency. In this paper, an A-GNR p–i–n structure with all three structural families, different width, and different number of layers to use in IR detectors have been investigated. With calculating the band structure and energy gap using the tight-binding model and by including the edge deformation, the optical absorption in the single electron approximation has been obtained by calculating the optical conductance. Finally, we have calculated the quantum efficiency and the optical responsivity of A-GNR based IR photodetector as a function of incident photon energy, temperature, nanoribbon width and the number of layers. Results show that the responsivity of the A-GNR based IR photodetector increase by increasing the width and number of layers and decrease by increasing the temperature.  相似文献   

13.
We analyze experimentally and theoretically mechanical oscillation within an optical cavity stimulated by the pressure of circulating optical radiation. The resulting radio frequency cavity vibrations (phonon mode) cause modulation of the incident, continuous-wave (cw) input pump beam. Furthermore, with increasing cw pump power, an evolution from sinusoidal modulation to random oscillations is observed in the pump power coupled from the resonator. The temporal evolution with pump power is studied, and agreement was found with theory. In addition to applications in quantum optomechanics, the present work suggests that radiation-pressure-induced effects can establish a practical limit for the miniaturization of optical silica microcavities.  相似文献   

14.
The Squeezing and sub-poissonian photon statistics of an optical field are a purely quantum mechanical phenomenon and has been accepted as means of achieving noise below the quantum shot-noise limit. The effect of higher-order squeezing and sub-poissonian nature of an optical field in coherent anti-Stokes Raman scattering (CARS) and coherent anti-Stokes hyper Raman scattering (CAHRS) are investigated under short-time approximation. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established and solved under short-time scale. The dependence of squeezing on the number of photons is also investigated. It is also shown that higher-order squeezing allows a much larger fractional noise reduction than lower-order squeezing. The occurrence of amplitude squeezing effects of the radiation field in the fundamental mode is investigated in both the processes. The present work shows that squeezing is greater in CAHRS than the corresponding squeezing in CARS. It is also shown that squeezing is greater in stimulated process than corresponding squeezing in spontaneous interaction. The conditions for obtaining maximum and minimum squeezing are obtained. The photon statistics of the pump mode in the processes has also been investigated and found to be sub-poissonian in nature.  相似文献   

15.
半导体激光泵浦Nd:YVO4激光器的1.34μm输出特性   总被引:1,自引:0,他引:1  
王长青  沈德元 《光学学报》1997,17(9):176-1179
报道了半导体激光泵浦Nd:YVO4激光器在1.34μm的输出特性,当入射的泵浦光功率为515mW时,最大1.34μm激光输出功率达157mW,光-光转换效率为30.5%,研究了激光器的纵模特性及弛豫噪声与泵浦功率的关系,发现不同的纵模具有各自不同的弛豫振荡频率。  相似文献   

16.
In this paper,we investigate the performance of the bulk fin field effect transistor(FinFET) through a threedimensional(3D) full band Monte Carlo simulator with quantum correction.Several scattering mechanisms,such as the acoustic and optical phonon scattering,the ionized impurity scattering,the impact ionization scattering and the surface roughness scattering are considered in our simulator.The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work.Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.  相似文献   

17.
为了提高长波量子阱红外探测器的灵敏度及探测率,采用表面等离激元效应来提高量子阱红外探测器中二维光栅的耦合效率。利用三维时域有限差分算法,分析表面等离激元作用下,长波量子阱红外探测器中二维金属薄膜光栅参数对入射光的调制作用。计算结果表明,对于8 m的入射光,当光栅周期P=2.8 m,孔直径D=1.4 m,光栅层厚度L=0.04 m时,X Y平面内Z方向电场值最大,光栅的耦合效率最高。  相似文献   

18.
激光二极管端面泵浦多段复合板条激光器热效应   总被引:2,自引:1,他引:1  
针对激光二极管端面泵浦的多段渐变浓度复合板条激光增益介质,提出了两种选取掺杂浓度的方法,并分别计算了多段渐变浓度复合板条增益介质的热量、温度及应力分布.结果表明,与单一掺杂浓度板条增益介质相比,采用多段渐变浓度复合增益介质可显著降低增益介质内部的温度梯度及最大热应力,从而提高了激光器整体的损伤极限泵浦功率,有利于激光器的功率升级.  相似文献   

19.
针对量子点光电探测器线列进行微光检测研究,量子点探测器采用AlAs/GaAs/AlAs双势垒结构,GaAs宽阱中分别有一个InAs量子点(QDs)和In0.15Ga0.85As量子阱(QW),建立一个简单的器件模型进行分析。常温下,在632.8 nm He-Ne激光照射下,当光功率为 0.01 pW时,器件偏压-0.5 V,积分时间80.2 μs,电压响应率达到7.0×1011 V·W-1,具有非常高的灵敏度,这种光电探测器在300 K温度下可以探测光功率小于10-14 W极弱光。以这种量子点光电探测器为核心研制的高灵敏度光谱仪和分子超光谱系统结合对生物组织样本进行检测,研制了一种图谱相互验证,互为校正的生物组织光谱测量系统。  相似文献   

20.
We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号