首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
本工作采用DSC、X-射线衍射、小角激光光散射、偏光显微镜等手段,研究了线性低密度聚乙烯/丁苯橡胶共混体系中聚乙烯的结晶结构、平衡熔点和结晶动力学。  相似文献   

2.
This paper summarizes a study of controlled migration of an antifog (AF) additive; sorbitan monooleate (SMO), from linear low density polyethylene (LLDPE) films containing a compatibilizer, LLDPE grafted maleic anhydride (LLDPE‐g‐MA). LLDPE/LLDPE‐g‐MA/SMO blends were prepared by melt compounding. Bulk and surface properties of compression molded LLDPE films containing SMO and LLDPE‐g‐MA were characterized using Fourier transform infrared spectroscopy and contact angle measurements. Thermal properties were investigated using a thermal gravimetric analyzer. Diffusion coefficient (D) was calculated, and AF properties were characterized using a “hot fog” test. Compression molded films were characterized for their morphology using high‐resolution scanning electron microscopy, and rheological properties were measured using a parallel‐plate rotational rheometer. It was found that the LLDPE/LLDPE‐g‐MA/SMO systems are characterized by a slower SMO migration rate, a lower diffusion coefficient, and lower contact angle values compared with LLDPE/SMO blends. These results are well correlated with results of a hot fog test. Morphological studies revealed a very fine dispersion of SMO in the LLDPE films, when 3 phr LLDPE‐g‐MA was combined with 1 phr SMO. Thermal analysis results show that the incorporation of 3 phr LLDPE‐g‐MA and 1 phr SMO significantly increases the decomposition temperature of the blend at T > 400°C. At high shear rates, the LLDPE blends show that the AF and the compatibilizer have a lubrication effect on LLDPE. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The thermorheological behavior of a number of LLDPE/LDPE blends was studied with emphasis on the effects of the production technology of the linear low‐density polyethylene (LLDPE) and the effects of long chain branching (LCB). Two Ziegler‐Natta LLDPE's (LL3001.32 and Dowlex2045G) and two metallocene LLDPEs (AffinityPL1840 and Exact 3128) were blended with a single low‐density polyethylene (LDPE), with all LLDPEs having distinctly different molecular weight. The weight fractions of the LDPEs used in the blends were 1, 5, 10, 20, 50, and 75%. DSC analysis has shown that the blends with metallocence LLDPEs are miscible in the crystal state, whereas for the Ziegler‐Natta, apart from the two distinct peaks of the individual components, a third peak appears which indicates the existence of a third phase that is created from the cocrystallization of components from the two blended polymers. The linear viscoelastic characterization was performed and mastercurves at 150 °C were constructed for all blends to check miscibility using the time temperature superposition principle. In addition, Van Gurp Palmen and zero‐shear viscosity versus composition were constructed to check the thermorheological behavior of all blends. In general, good agreement is found among these various methods. It was concluded that metallocene LLDPEs are more compatible with LDPE at all LDPE compositions when compared with their Ziegler‐Natta counterparts. Finally, the extensional properties of all blends were studied to examine the effects of different levels of LCB on their extensional rheological properties. It was concluded that extensional rheology is a sensitive tool capable of detecting subtle changes in the polyethylene macrostructure, that is, low levels of LCB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1669–1683, 2008  相似文献   

4.
茂金属线性低密度聚乙烯的组成均匀性徐旭荣徐君庭封麟先陈伟(浙江大学高分子科学与工程学系杭州310027)(中国石化总公司石油化工科学研究院北京100083)关键词线性低密度聚乙烯,组成均匀性,茂金属催化剂80年代以来,茂金属催化剂得到迅速发展....  相似文献   

5.
聚氯乙烯/线性低密度聚乙烯共混体系的相容性   总被引:5,自引:0,他引:5  
用动态力学分析(DMA)和傅利叶变换红外光谱(FTIR)研究了氢化聚丁二烯-b-聚甲基丙烯酸甲酯(HPBD-b-PMMA)共聚物增容剂对聚氯乙烯(PVC)与线性低密度聚乙烯(LLDPE)共混体系的增容作用.增容剂使共混物中两相的玻璃化温度发生变化,说明其相容性增加.FTIR的结果表明,增容剂中羰基与PVC的α氢形成氢键,使CO,H─C及C─Cl的振动频率变化,峰形加宽.  相似文献   

6.
LLDPE/纳米SiO2膜的光学性能   总被引:5,自引:0,他引:5  
LLDPE;农膜;LLDPE/纳米SiO2膜的光学性能  相似文献   

7.
The crystallization behavior of two ethylene/octene copolymers, which differ in hexyl branch concentration, and their fractions were assessed. Fractionation of the crystalline linear low density polyethylenes (LLDPEs) was achieved by temperature rising elution fractionation. As the column temperature was raised, the eluted fractions exhibited a reduction in branch concentration and an increase in molecular weight. This was attributed to the difference in reactivity between ethylene and octene and the subsequent depletion of the ethylene monomer in the solution process. Spherulites formed during the crystallization of the whole polymers were well developed, banded, and displayed a wide distribution of sizes. However, spherulites of the LLDPE fractions were less well developed, more uniform in size, and tended to progressively deteriorate and become smaller as the concentration of branches increased. The ethylene and octene blocks of the copolymer crystallized independently, and it was proposed that the octene portion formed short, curved lamellae in the interfacial region of the lamellae formed from the linear ethylene portion of the molecule. Decreases in d spacing for fractions with increased short chain branching corresponded with similar drops in molecular weight.  相似文献   

8.
利用差示扫描量热法结合Avrami方程研究了线性低密度聚乙烯(LLDPE)、LLDPE与苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)共混体系及LLDPE与不同接枝率的SEBS共聚物接枝马来酸酐(SEBS-g-MAH)共混体系的非等温结晶动力学,探讨了SEBS-g-MAH对LLDPE结晶行为的影响.通过偏光显微镜(POM)观察了各体系的结晶形态.通过Gupta法、Jeziorny法和莫志深法分别对非等温结晶过程进行表征,结果显示:热塑性弹性体SEBS及其接枝物SEBS-g-MAH的加入阻碍了LLDPE分子链的规则排列,影响了链段在结晶扩散迁移过程中的规整排列速率,使得结晶速率变慢,对LLDPE晶体生长起了抑制作用.样品的Avrami指数均为1.1~1.5,说明LLDPE的结晶成核机理和生长方式没有改变.  相似文献   

9.
The structure and thermal properties of linear low‐density polyethylene (LLDPE)/medium soft paraffin wax blends, prepared by melt mixing, were investigated by differential scanning calorimetry (DSC) and small‐ and wide‐angle X‐ray scattering (SAXS and WAXS). The blends form a single phase in the melt as determined by SAXS. Upon cooling from the melt, two crystalline phases develop for blends with more than 10 wt % wax characterized by widely different melting points. The wax acts as an effective plasticizer for LLDPE, decreasing both its crystallization and melting temperature. The higher melting point crystalline phase is formed by less branched LLDPE fractions. On the other hand, the lower melting point crystalline phase is a wax‐rich phase constituted by cocrystals of extended chain wax and short linear sequences of highly branched LLDPE chains. The presence of cocrystals was evidenced by standard DSC results, successive self‐nucleation and annealing (SSA) thermal fractionation and by the detection of a new SAXS signal attributed to the lamellar long period of the cocrystals. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1469–1482  相似文献   

10.
以聚氧乙烯和全氟辛基聚氧乙烯醚(FPEOE)为起始原料, 合成了一系列的特种氟表面活性剂及其丙烯酸酯, 用FTIR和1H NMR对其结构进行了表征, 用最大气泡法测定了其表面张力. 以其作为接枝单体, 利用反应挤出接枝的方法制备了系列功能化聚乙烯, 用FTIR确定了接枝共聚物的结构和接枝率; 用DSC、接触角测量仪和XPS对接枝共聚物的热性能、结晶行为和表面性能进行了测试分析. 结果表明, 随着聚氧乙烯分子量的增加, 氟表面活性剂的表面活性降低; 聚乙烯接枝共聚物的结晶温度高于线形低密度聚乙烯, 且具有较好的亲水性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号