首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
We show that diffusion approximations, including modified diffusion approximations, can be problematic since the proper choice of local boundary conditions (if any exist) is not obvious. For a class of Markov processes in one dimension, we show that to leading order it is proper to use a diffusion (Fokker-Planck) approximation to compute mean exit times with a simple absorbing boundary condition. However, this is only true for the leading term in the asymptotic expansion of the mean exit time. Higher order correction terms do not, in general, satisfy simple absorbing boundary conditions. In addition, the diffusion approximation for the calculation of mean exit times is shown to break down as the initial point approaches the boundary, and leads to an increasing relative error. By introducing a boundary layer, we show how to correct the diffusion approximation to obtain a uniform approximation of the mean exit time. We illustrate these considerations with a number of examples, including a jump process which leads to Kramers' diffusion model. This example represents an extension to a multivariate process.  相似文献   

2.
We investigate the solutions and the first passage time for anomalous diffusion processes governed by the fractional nonlinear diffusion equation with a space- and time-dependent diffusion coefficient subject to absorbing boundaries and the initial condition. We obtain explicit analytical expression for the probability distribution, the first passage time distribution, the mean first passage time, and the mean squared displacement corresponding to different time-dependent diffusion coefficient. In addition, we compare our results for the first passage time distribution and the mean first passage time with the one obtained by usual linear diffusion equation with time-dependent diffusion coefficient.  相似文献   

3.
We study Markov jump processes constructed by subordination of diffusion processes. The procedure can be viewed as a randomization or a coarse graining of time. We construct the master equation for the cases of finite and infinite total jump rates, and give a collection of explicitly solvable examples.  相似文献   

4.
It has recently been shown that the first passage time problem for a certain class of one-dimensional processes that includes shot noise can be formulated in terms of a set of integral equations. These are found by exact enumeration of all possible trajectories. We show that the equations can be found by more direct means for processes described by the evolution equation , wheren(t) is time-localized shot noise.  相似文献   

5.
6.
External control of some genes in a genetic regulatory network is useful for avoiding undesirable states associated with some diseases. For this purpose, a number of stochastic optimal control approaches have been proposed. Probabilistic Boolean networks (PBNs) as powerful tools for modeling gene regulatory systems have attracted considerable attention in systems biology. In this paper, we deal with a problem of optimal intervention in a PBN with the help of the theory of discrete time Markov decision process. Specifically, we first formulate a control model for a PBN as a first passage model for discrete time Markov decision processes and then find, using a value iteration algorithm, optimal effective treatments with the minimal expected first passage time over the space of all possible treatments. In order to demonstrate the feasibility of our approach, an example is also displayed.  相似文献   

7.
Jun Wang  Wen-Jun Zhang  Pan Zhang 《Physica A》2008,387(18):4547-4552
We investigate the solutions and the first passage time for anomalous diffusion processes governed by the fractional nonlinear diffusion equation with diffusion coefficient separable in time and space, D(t,x)=D(t)|x|θ, subject to absorbing boundary condition and the conventional initial condition p(x,0)=δ(xx0). We obtain explicit analytical expressions for the probability distribution, the first passage time distribution, the mean first passage time and the mean squared displacement, and discuss their behavior corresponding to different time dependent diffusion coefficients.  相似文献   

8.
发展了一种基于分离变量法的非线性Schordinger方程的微扰论直接法。导出了微扰对亮孤子的一阶效应,即导出了孤子参数随时间的缓慢变化及微扰对孤子的一阶修正  相似文献   

9.
Joseph L. McCauley 《Physica A》2007,382(2):445-452
The purpose of this comment is to correct mistaken assumptions and claims made in the paper “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations” by T. D. Frank [T.D. Frank, Stochastic feedback, non-linear families of Markov processes, and nonlinear Fokker-Planck equations, Physica A 331 (2004) 391]. Our comment centers on the claims of a “non-linear Markov process” and a “non-linear Fokker-Planck equation.” First, memory in transition densities is misidentified as a Markov process. Second, the paper assumes that one can derive a Fokker-Planck equation from a Chapman-Kolmogorov equation, but no proof was offered that a Chapman-Kolmogorov equation exists for the memory-dependent processes considered. A “non-linear Markov process” is claimed on the basis of a non-linear diffusion pde for a 1-point probability density. We show that, regardless of which initial value problem one may solve for the 1-point density, the resulting stochastic process, defined necessarily by the conditional probabilities (the transition probabilities), is either an ordinary linearly generated Markovian one, or else is a linearly generated non-Markovian process with memory. We provide explicit examples of diffusion coefficients that reflect both the Markovian and the memory-dependent cases. So there is neither a “non-linear Markov process”, nor a “non-linear Fokker-Planck equation” for a conditional probability density. The confusion rampant in the literature arises in part from labeling a non-linear diffusion equation for a 1-point probability density as “non-linear Fokker-Planck,” whereas neither a 1-point density nor an equation of motion for a 1-point density can define a stochastic process. In a closely related context, we point out that Borland misidentified a translation invariant 1-point probability density derived from a non-linear diffusion equation as a conditional probability density. Finally, in the Appendix A we present the theory of Fokker-Planck pdes and Chapman-Kolmogorov equations for stochastic processes with finite memory.  相似文献   

10.
We present an invariance principle for antisymmetric functions of a reversible Markov process which immediately implies convergence to Brownian motion for a wide class of random motions in random environments. We apply it to establish convergence to Brownian motion (i) for a walker moving in the infinite cluster of the two-dimensional bond percolation model, (ii) for ad-dimensional walker moving in a symmetric random environment under very mild assumptions on the distribution of the environment, (iii) for a tagged particle in ad-dimensional symmetric lattice gas which allows interchanges, (iv) for a tagged particle in ad-dimensional system of interacting Brownian particles. Our formulation also leads naturally to bounds on the diffusion constant.  相似文献   

11.
Hao Shen 《中国物理 B》2021,30(6):60203-060203
We investigate the problem of $\mathcal{H}_{\infty}$ state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule, as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously. Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an $\mathcal{H}_{\infty}$ performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.  相似文献   

12.
The exact form for the kinetic equation derived by Mori, Fujisaka, and Shigematsu (MFS) is used to obtain several approximations better suited to be compared with macroscopic transport equations. Three approximations are discussed, namely, those known as the diagonal, the slow process, and the Markovian. The corresponding results are emphasized and their relationship is established. In particular, the Kramers-Moyal expansion for the Markovian kinetic equation is obtained from a microscopic basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号