首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH3COO)2·Cd·2H2O, SeO2, and FeCl3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, Eg from 1.95 to 1.65 eV.  相似文献   

2.
We have analyzed the optical properties of a-Ge30-xSbxS70 chalcogenide glass films (x=0,10,20 and 30 at%); the chalcogenide films were prepared by vacuum thermal evaporation. The optical-absorption data indicate that the absorption mechanism is non-direct transition. We found that the optical band gap, Eopt, decreases from 2.04±0.01 to 1.74±0.01 eV, whereas the refractive index increases with increasing Sb content. Data are analyzed by the Wemple equation, which is based on the single-oscillator model.  相似文献   

3.
The adsorption mechanism for the new compound, 7-ethynyl-2,4,9-trithia-tricyclo[3.3.1.13,7]decane (7ETTD), on ultra-thin films (∼3 nm) of CdS is investigated. Multiple reflection absorption IR spectroscopy, in conjunction with inelastic electron tunneling spectroscopy, indicates that this compound forms a self-assembled monolayer adsorbed on the CdS surface via each molecule’s trithia-adamantane anchor. Conductance-voltage data are recorded for tunnel junctions of the type Al/CdS/7ETTD/Pb over a temperature range of 4 K to room temperature and they indicate that the presence of the 7ETTD layer on the CdS dramatically modifies the conductance-voltage behavior of the junctions. These measurements show that different conduction mechanisms, including tunneling and possibly hopping, are responsible for charge transfer through the junctions depending on current, temperature, and voltage. WKB fits to the data are used to determine barrier parameters (height and width) for Al/CdS/Pb junctions with and without adsorbed 7ETTD layers on the CdS. Analysis of the fits shows that tunneling occurs at low bias (less than ∼0.2 V) but, at higher bias voltages, modification of the barrier parameters alone is insufficient to account for the observed conductance changes. A frontier orbital model is invoked which does offer a plausible explanation for these conductance changes. The model assumes bias-dependent coupling between HOMO and LUMO states of the adsorbed 7ETTD and the surface states on the CdS. The present work suggests that, because of the marked effect on the conductance of CdS ultra-thin films, 7ETTD and other similar compounds may be candidates for use in molecular electronic device fabrication.  相似文献   

4.
In this work thin CdS films using glycine as a complexing agent were fabricated by chemical bath deposition and then doped with silver (Ag), by an ion exchange process with different concentrations of AgNO3 solutions. The CdS films were immersed in silver solutions using different concentrations during 1 min for doping and after that the films were annealed at 200 °C during 20 min for dopant diffusion after the immersion on the AgNO3 solutions. The aim of this research was to know the effects of different concentrations of Ag on the optical and structural properties of CdS thin films. The optical band gap of the doped films was determined by transmittance measurements, with the results of transmittance varying between 35% and 70% up to 450 nm in the electromagnetic spectra and the band gap varying between 2.31 and 2.51 eV depending of the silver content. X-ray photoelectron spectroscopy was used to study the influence of silver on the CdS:Ag films, as a function of the AgNO3 solution concentration. The crystal structure of the thin CdS:Ag films was studied by the X-ray diffraction method and the film surface morphology was studied by atomic force microscopy. Using the ion exchange process, the CdS films’ structural, optical and electric characteristics were modified according to silver nitrate concentration used.  相似文献   

5.
用铜和氯掺杂的CdS-CdSe双层光电导膜的性质   总被引:2,自引:0,他引:2  
顾培夫  李海峰  叶辉  刘旭  唐晋发 《光学学报》1999,19(9):218-1222
对掺Cu和Cl的CdS-CdSe双怪光电导膜的暗电导和亮电导与掺杂浓度及Cu/Cl比的关系、响应时间和光谱响应进行了研究。试验发现:适当的Cu/Cl掺杂比可使暗电导降低而亮电导提高;掺杂薄膜的响应时间可达5-10ms,而对掺杂一般为数百毫秒;随着CdSe浓度增加,光学吸收变大,光谱响应向长波移动 。  相似文献   

6.
Aluminum-doped zinc oxide (AZO) thin films have been deposited by electron beam evaporation technique on glass substrates. The structural, electrical and optical properties of AZO films have been investigated as a function of annealing temperature. It was observed that the optical properties such as transmittance, reflectance, optical band gap and refractive index of AZO films were strongly affected by annealing temperature. The transmittance values of 84% in the visible region and 97% in the NIR region were obtained for AZO film annealed at 475 °C. The room temperature electrical resistivity of 4.6×10−3 Ω cm has been obtained at the same temperature of annealing. It was found that the calculated refractive index has been affected by the packing density of the thin films, whereas, the high annealing temperature gave rise to improve the homogeneity of the films. The single-oscillator model was used to analyze the optical parameters such as the oscillator and dispersion energies.  相似文献   

7.
In this work we report on the properties of chemically deposited CdS thin films in an ammonia-free cadmium-sodium citrate system. We studied the influence on the properties of the films of the pH control of the reaction solution. For this, we deposited two types of CdS films employing two different types of reaction solutions. The only difference between both reaction solutions was the addition of a pH buffer in one of them in order to control its pH throughout the deposition process. Several sets of CdS films were deposited from growth solutions with different contents of Cd to determine also the influence of this parameter on the properties of the films. The CdS films were studied by X-ray diffraction, optical transmission and reflection spectroscopy and scanning electron microscopy measurements. We found that the properties of the films depend both on the amount of Cd in the growth solutions and on their pH control. The increase in Cd in the reaction solution yields to films with shorter lattice constant and then higher energy band gap. On the other hand, the pH control of the reaction produces higher deposition rate, larger final thickness and higher energy band gaps in the CdS films.  相似文献   

8.
《Physics letters. A》2020,384(26):126199
In the present work, high quality Pb doped ZnS thin films were deposited on glass substrates at 450°C using spray ultrasonic technique. The dependence of the structural, morphological and optical properties of the films on the lead (Pb) doping amount was investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis–NIR spectrophotometry, and four-point method. The improvement of the obtained Pb:ZnS thin films properties were discussed as a function of Pb concentration (0.5 to 2 at.%). The average crystallite size of Pb:ZnS was found in the range of 25–37 nm. The scanning electron microscopy (SEM) reveals that the films are continuous, homogeneous and dense. The UV–vis–NIR spectroscopy characterizations demonstrated that all the films exhibit good transmittance (60–70%) in the visible region and their optical band gap energy (Eg) changes from 3.92 to 3.6 eV. The films electrical resistivity showed an apparent dependence on Pb content.  相似文献   

9.
王东明  王德亮 《中国物理 B》2017,26(6):67503-067503
The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.  相似文献   

10.
Bulk Ge20Se80−xTlx (x ranging from 0 to 15 at%) chalcogenide glasses were prepared by conventional melt quenching technique. Thin films of these compositions were prepared by thermal evaporation, on glass and Si wafer substrates at a base pressure of 10−6 Torr. X-ray diffraction studies were performed to investigate the structure of the thin films. The absence of any sharp peaks in the X-ray diffractogram confirms that the films are amorphous in nature. The optical constants (absorption coefficient, optical band gap, extinction coefficient and refractive index) of Ge20Se80−xTlx thin films are determined by absorption and reflectance measurements in a wavelength range of 400-900 nm. In order to determine the optical gap, the absorption spectra of films with different Tl contents were analyzed. The absorption data revealed the existence of allowed indirect transitions. The optical band gap showed a sharp decrease from 2.06 to 1.79 eV as the Tl content increased from 0% to 15%. It has been found that the values of absorption coefficient and refractive index increase while the extinction coefficient decreases with increase in Tl content in the Ge-Se system. These results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. DC electrical conductivity of Ge20Se80−xTlx thin films was carried out in a temperature range 293-393 K. The electrical activation energy of these films was determined by investigating the temperature dependence of dc conductivity. A decrease in the electrical activation energy from 0.91 to 0.55 eV was observed as the Tl content was increased up to 15 at% in Ge20Se80−xTlx system. On the basis of pre-exponential factor, it is suggested that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges.  相似文献   

11.
We study the initial growth stages of CdS thin films deposited by an ammonia-free chemical bath deposition process. This ammonia-free process is more environmentally benign because it reduces potential ammonia release to the environment due to its high volatility. Instead of ammonia, sodium citrate was used as the complexing agent. We used atomic force microscopy (AFM), Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS) to investigate the morphological and chemical modifications at the substrate surface during the first initial stages of the CdS deposition process. Additionally, X-ray diffraction (XRD) and optical transmission spectroscopy measurements were carried out to compliment the study. XPS results show that the first nucleation centers are composed by Cd(OH)2 which agglomerate in patterns of bands, as demonstrated by AFM results. It is also observed that the conversion to CdS (by anionic exchange) of the first nucleus begins before the substrate surface is completely covered by a homogenous film.  相似文献   

12.
ZnSe thin films have been prepared by inert gas condensation method at different gas pressures. The influence of deposition pressure, on structural, optical and electrical properties of polycrystalline ZnSe films have been investigated using X-ray diffraction (XRD), optical transmission and conductivity measurements. The X-ray diffraction study reveals the sphalerite cubic structure of the ZnSe films oriented along the (1 1 1) direction. The structural parameters such as particle size [6.65-22.24 nm], strain [4.01-46.6×10−3 lin−2 m−4] and dislocation density [4.762-18.57×1015 lin m−2] have been evaluated. Optical transmittance measurements indicate the existence of direct allowed optical transition with a corresponding energy gap in the range 2.60-3.00 eV. The dark conductivity (σd) and photoconductivity (σph) measurements, in the temperature range 253-358 K, indicate that the conduction in these materials is through an activated process having two activation energies. σd and σph values decrease with the decrease in the crystallite size. The values of carrier life time have been calculated and are found to decrease with the reduction in the particle size. The conduction mechanism in present samples has been explained, and the density of surface states [9.84-21.4×1013 cm−2] and impurity concentration [4.66-31.80×1019 cm−3] have also been calculated.  相似文献   

13.
Bismuth trioxide (Bi2O3) thin films were prepared by dry thermal oxidation of metallic bismuth films deposited by vacuum evaporation. The oxidation process of Bi films consists of a heating from the room temperature to an oxidation temperature (To = 673 K), with a temperature rate of 8 K/min; an annealing for 1 h at oxidation temperature and, finally, a cooling to room temperature. The optical transmission and reflection spectra of the films were studied in spectral domains ranged between 300 nm and 1700 nm, for the transmission coefficient, and between 380 nm and 1050 nm for the reflection coefficient, respectively. The thin-film surface structures of the metal/oxide/metal type were used for the study of the static current-voltage (I-U) characteristics. The temperature of the substrate during bismuth deposition strongly influences both the optical and the electrical properties of the oxidized films. For lower values of intensity of electric field (ξ < 5 × 104V/cm), I-U characteristics are ohmic.  相似文献   

14.
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (∼445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry.  相似文献   

15.
Highly crystalline and transparent cadmium sulphide films were fabricated at relatively low temperature by employing an inexpensive, simplified spray technique using perfume atomizer (generally used for cosmetics). The structural, surface morphological and optical properties of the films were studied and compared with that prepared by conventional spray pyrolysis using air as carrier gas and chemical bath deposition. The films deposited by the simplified spray have preferred orientation along (1 0 1) plane. The lattice parameters were calculated as a = 4.138 Å and c = 6.718 Å which are well agreed with that obtained from the other two techniques and also with the standard data. The optical transmittance in the visible range and the optical band gap were found as 85% and 2.43 eV, respectively. The structural and optical properties of the films fabricated by the simplified spray are found to be desirable for opto-electronic applications.  相似文献   

16.
Films of the parent compound FeTe can be made superconducting via the addition of interstitial oxygen. The process is reversible. We have characterized the new superconductors with a variety of experiments. X-ray diffraction shows that the superconductor has the same overall structure but a small lattice constant change compared to pure FeTe. X-ray absorption shows that superconducting FeTeOx has a nominal valence of 3+. DFT calculations show the most likely position for interstitial oxygen and confirm that such oxygen incorporation does not produce a large change in structure.  相似文献   

17.
This paper deals with a detailed study of the growth stages of CdS thin films on ITO/glass substrates by chemical bath deposition (CBD). The chemical and morphological characterization was done through X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), and atomic force microscopy (AFM) techniques. On the other hand, optical transmission and X-ray diffraction (XRD) measurements were performed in order to study the optical and structural properties of the films. The time, the chemistry, and morphology of the different stages that form the growth process by CBD were identified through these results. Furthermore, clear evidence was obtained of the formation of Cd(OH)2 as the first chemical species adhered to the substrate surface which forms the first nucleation centers for a good CdS formation and growth. On the other hand, the ITO coating caused growth stages to occur earlier than in just glass substrates, with which we can obtain a determined thickness in a shorter deposition time. We were able to prove that CBD is a good technique for the manufacture of thin films of semiconductor materials, since the CdS film does not have any impurities. Completely formed films were transparent, uniform, with good adherence to the substrate, of a polycrystalline nature with a hexagonal structure. These results indicate that films obtained by CBD are good candidates to be applied in different optoelectronic devices.  相似文献   

18.
CdS and CdS/Co films have been deposited on glass substrates by an ultrasonic spray pyrolysis method. The effects of Co incorporation on the structural, optical, morphological, elemental and vibrational properties of these films were investigated. XRD analysis confirmed the hexagonal wurtzite structure of all films and had no impurity phase. While CdS film has (0 0 2) as the preferred orientation, CdS/Co films have (1 1 0) as the preferred orientation. The direct optical band gap was found to decrease from 2.42 to 2.39 eV by Co incorporation. The decrease of the direct energy gaps by increasing Co contents is mainly due to the sp-d exchange interaction between the localized d-electrons of Co2+ ions and band electrons of CdS. After the optical investigations, it was seen that the transmittance of CdS films decreased by Co content. The Raman measurements revealed two peaks corresponding to the 1LO and 2LO modes of hexagonal CdS. The vibrational modes of Cd-S were obtained in the wavenumber range (590-715 cm−1) using Fourier transform infrared spectroscopy (FTIR). The elemental analysis of the film was done by energy dispersive X-ray spectrometry.  相似文献   

19.
ZnSe thin films were deposited onto Corning glass and silicon substrates using thermal evaporation. The samples were prepared at different substrate temperatures. The thin films’ surface chemical composition was determined through Auger electron spectroscopy (AES). AES signals corresponding to Zn and Se were only detected in AES spectra. The samples’ crystallographic structure was studied through X-ray diffraction. The material crystallised in the cubic structure with preferential orientation (111). Optical properties of the ZnSe films were studied over two energy ranges via electron energy loss spectroscopy (10–90 eV) and spectral transmittance measurements (0.4–4 eV). In both cases, the spectral variation of the refractive index and the absorption coefficient were determined by fitting the experimental results with well-established theoretical models. Experimental values for the material’s gap were also found, and photoconductivity (PC) measurements were carried out. Transitions between bands, usually labelled ΓV8 → ΓC6 and ΓV7 → ΓC6, were found in the optical and PC responses. A wide spectral photoconductive response between 300 and 850 nm was found in the ZnSe/Si samples prepared at 250 °C substrate temperature.  相似文献   

20.
Ion-conducting polymer electrolyte films based on a copolymer poly(methyl-methacrylate-co-4-vinyl pyridine N-oxide) [P(MMA-CO-4VPNO)] complexed with potassium chlorate (KClO3) were prepared by solution cast technique. The complexation of KClO3 salt with the polymer was confirmed by X-ray diffraction and infrared studies. The electrical conductivity and optical absorption of pure and KClO3-doped P(MMA-CO-4VPNO) polymer electrolyte films have been studied. The electrical conductivity increased with increasing dopant concentration, which is attributed to the formation of charge transfer complexes. The variation of electrical conductivity with temperature shows two regions with two activation energies. Optical properties like direct band gap, indirect band gap, and optical absorption edge were investigated for pure and doped polymer films in the wavelength range 300–550 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. The behavior is in an agreement with the activation energies obtained from the conductivity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号