首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of nano-crystalline ceria-based solid solution electrolyte, Ce0.8La0.2?x MgxO2?δ (x?=?0.0, 0.05, 0.10, 0.15, and 0.2), were synthesized via the polyvinyl alcohol (PVA) assisted combustion method, and then characterized to the crystalline structure, powder morphology, sintering micro-structure, and electrical properties. Present study showed that Ce0.8La0.2?x Mg x O2?δ was exceedingly stable as a cubic phase in all temperature range and exhibited fine crystals ranging from 15 to 20 nm. After sintering at 1,400 °C, the as-prepared pellets exhibited a dense micro-structure with 96 % of theoretical density. The electrical conductivity was studied using AC impedance spectroscopy and it was observed that the composition Ce0.8La0.1?Mg0.1O2?δ showed higher electrical conductivity of 0.020 S?cm?1 at 700 °C. The thermal expansion was measured using dilatometer technique in the temperature range 30–1,000 °C. The average thermal expansion coefficient of Ce0.8La0.1?Mg0.1O2?δ was 12.37?×?10?6 K?1, which was higher than that of the commonly used SOFC electrolyte YSZ (~10.8?×?10?6 K?1).  相似文献   

2.
《Current Applied Physics》2018,18(10):1134-1142
In the present investigation, the effect of La3+ and Pr3+ co-doping on structural, thermal and electrical properties of ceria ceramics useful as solid electrolytes in intermediate temperature solid oxide fuel cells (IT-SOFCs) has been studied. The co-doped ceria Ce0.8Pr0.2–xLaxO2-δ samples have been prepared successfully via sol-gel auto-combustion synthesis. The high dense ceramic samples have been achieved by carry out an optimized conventional sintering at 1300 °C for 4 h. The powder X-ray diffraction analysis of all the co-doped ceria ceramics revealed the single phase with cubic-fluorite structure formation. Crystallographic information has been carried out from the powder X-ray diffraction and Rietveld refinement analysis. The scanning electron microscope and energy dispersive spectroscopy analysis revealed the smaller grain size with high density in microstructure and stoichiometric elemental confirmations. Raman spectra of prepared ceramics revealed the information of phase and oxygen vacancy formation in the entire compositions. The dilatometric studies of prepared co-doped ceria ceramics revealed the moderate coefficients of thermal expansion. The electrical parameters such as total conductivities and activation energies have been studied with the help of impedance spectroscopy. Among all these co-doped ceria ceramic samples, Ce0.80Pr0.10La0.10O2−δ found to exhibit the highest value of total ionic conductivity with minimum activation energy and this makes it could be a promising electrolyte material for IT-SOFC applications.  相似文献   

3.
Li Zhao  Wenyi Tan  Qin Zhong 《Ionics》2013,19(12):1745-1750
A series of BaCe0.8???x Zr x Y0.2O3???δ (BCZYx) (x?=?0, 0.2, 0.4, 0.6, 0.8) powders were prepared by EDTA–citrate complexing sol–gel process in this paper. The electrical conducting behavior, as well as chemical stability, was investigated. X-ray diffraction (XRD) results reveal that all samples are homogenous perovskite phases. Observed from XRD patterns and thermogravimetric curves, the samples with x?≥?0.4 survive in the pure CO2, while samples with various Zr contents all present structurally stable against steam at 800 °C. The Zr-free sample of BaCe0.8Y0.2O3???δ possesses the maximum bulk conductivity, 4.25?×?10?2 S/cm, but decomposes into Ba(OH)2 and Ce0.8Y0.2O3???δ in steam. A negative influence of increasing Zr content on the conductivity of BCZYx can be observed by impedance tests. Considering the effect of temperature on the bulk conductivity, BCZY0.4 is preferred to be applied in SOFC as a protonic conductor, ranging from 1.52?×?10?4 to 1.51?×?10?3 S/cm (500–850 °C) with E a?=?0.859 eV, which is proved to be a good protonic conductor with t H+?≥?0.9.  相似文献   

4.
Nanocrystalline co-doped ceria Ce0.8Sm0.2?xYxO2?δ solid electrolytes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) were synthesized through sol–gel auto-combustion method. The prepared samples were sintered via microwave sintering at 1200 °C for 1 h. The X-ray diffraction analysis of co-doped ceria system reveals formation of the samples with a single-phase cubic fluorite structure. The lattice parameter values were calculated from X-ray diffraction patterns. The calculated crystallite sizes of all the samples were found to be in the range of 17 and 28 nm. Surface morphologies and elemental analysis of all the samples were carried out by using SEM and EDS analysis. The existence of chemical bonding in the samples was studied by FTIR spectroscopy. The presence of oxygen vacancies and evaluation of their concentration in the material was carried out using Raman spectroscopy analysis. Electrical properties of all the samples were analyzed by impedance spectroscopy. It was found that microwave sintered co-doped ceria sample Ce0.8Sm0.1Y0.1O2?δ exhibits the highest total ionic conductivity with minimum activation energy among all the compositions and conventional sintered sample. Therefore, it can be concluded that the microwave sintered Ce0.8Sm0.1Y0.1O2?δ sample may be useful as a promising electrolyte material for the IT-SOFCs.  相似文献   

5.
《Solid State Ionics》2006,177(26-32):2513-2518
Ceria-based thin films are potential materials for use as gas-sensing layers and electrolytes in micro-solid oxide fuel cells. Since the average grain sizes of these films are on the nanocrystalline scale (< 150 nm), it is of fundamental interest whether the electrical conductivity might differ from microcrystalline ceria-based ceramics. In this study, CeO2 and Ce0.8Gd0.2O1.9−x thin films have been fabrication by spray pyrolysis and pulsed laser deposition, and the influence of the ambient average grain size on the total DC conductivity is investigated. Dense and crack-free CeO2 and Ce0.8Gd0.2O1.9−x thin films were produced that withstand annealing up to temperatures of 1100 °C. The dopant concentration and annealing temperature affect highly the grain growth kinetics of ceria-based thin films. Large concentrations of dopant exert Zener drag on grain growth and result in retarded grain growth. An increased total DC conductivity and decreased activation energy was observed when the average grain size of a CeO2 or Ce0.8Gd0.2O1.9−x thin film was decreased.  相似文献   

6.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

7.
Effect of co-doping of lanthanum and aluminum on ionic conductivity of CeO2 for its use as a solid electrolyte in intermediate temperature solid oxide fuel cells has been studied. A few compositions in the system Ce1???x???y Al x LayO2???(x?+?y)/2 (CAL) with x?=?0.05, 0.025, and 0.00 and y?=?0.00, 0.025, and 0.05 such that x?+?y?=?0.05 are prepared by auto-combustion method. X-ray diffraction patterns show that all the synthesized samples are ceria-based solid solutions. Microstructures of thermally etched samples have been studied by scanning electron microscope. To determine the contribution of grains, σ g and grain boundaries, σ gb to the total conductivity, σ t impedance is measured in the frequency range 1–1 MHz at different steady temperatures in the range 250–500 °C. It has been found that conductivity of the co-doped composition is more than singly doped with Al but less than singly doped lanthanum composition.  相似文献   

8.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

9.
A series of Ce0.85Ca0.15?x Sr x O2–δ (x?=?0, 0.03 and 0.06) were synthesized via citrate–nitrate combustion method. Samples were first characterized by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD and SEM results showed that a complete solid solution formed in fluorite structure and Ce0.85Ca0.15?x Sr x O2?δ had homogeneous distribution of particle with grain size in the range of 2.5 to 3 μm. The electrical conductivities of Ce0.85Ca0.15?x Sr x O2?δ were evaluated for its use as a solid electrolyte in the intermediate-temperature solid oxide fuel cells by complex plane impedance measurements. Impedance measurements were made in the frequency range 1 MHz–0.1 Hz and temperature range 300–700 °C. It was found that Ce0.85Ca0.12Sr0.03O2?δ showed highest conductivity.  相似文献   

10.
The synthesis of series of dysprosium-doped lithium manganese oxide in the general formula LiDy x Mn2?x O4 (x?=?0.0, 0.05, 0.1, 0.15, and 0.2) using double stage coprecipitation method followed by microwave heat treatment is reported. The characterization results of X-ray diffraction and infrared spectroscopy have illustrated the cubic structure for all the compounds. The lattice parameter has been observed to decrease with dysprosium doping. The influence of doping in elastic property of the samples has been studied with infrared spectroscopy. The grain size of the LiDy0.05Mn1.95O4 has been observed to be less than 1???m. The Image J software has been used to further analyze the micrographs. The initial capacity of the samples are observed to decrease with Dy3+ doping, but the capacity retention after 50 cycles for Dy 0.05, 0.1, 0.15, and 0.2 samples are reported as 95.4%, 93.2%, 91.3%, and 87.7%, respectively. The electrochemical impedance spectra has been performed to analyze the effectiveness of Dy3+ ion doping and the act of Dy doping has been observed to reduce the charge transfer resistance and increase the Li ion diffusion coefficient.  相似文献   

11.
《Solid State Ionics》2006,177(11-12):1041-1045
The paper discusses the Y and Nd doped barium cerate perovskites prepared by a modified Pechini method. The series prepared is described by the formula BaCe0.80YxNd0.2−x O3−δ. The BaCeO3 based powders, about 10–20 nm sized and uniformly shaped, were obtained through the calcination of the gel at 500 °C for 2 h. Their structures and ionic conductivities were characterized by X-ray diffraction and AC impedance spectroscopy. All the electrolytes were found to be barium cerate based solid solutions of perovskite type structures. Impedance spectra indicate that the grain boundary resistance of the specimen synthesized by this method is smaller than that of the samples prepared by a conventional solid-state method. The ionic conductivities of co-doped barium cerate were a factor of several times than that of the single-doped one at 673–1073 K. Among the electrolytes examined, the one co-doped with 5 mol% Nd and 15 mol% Y shows the best improvement in performance. These co-doped barium cerate are more ideal intermediate temperature (IT) electrolyte materials.  相似文献   

12.
The Pr3+, Sm3+, and Gd3+ triple-doped ceria Ce0.76Pr0.08Sm0.08Gd0.08O2-δ material as solid electrolyte for IT-SOFC has been successfully synthesized by sol–gel auto-combustion route. The effect of microwave sintering (1300 °C for 15, 30, and 60 min, named as PSG-MS15, PSG-MS30, and PSG-MS60, respectively) on structural, electrical, and thermal properties of prepared electrolyte material has been studied. Powder X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, and Raman analysis revealed the single phase, microstructure, elemental confirmation, and structural oxygen vacancy formation of all the samples. Impedance spectroscopy analysis revealed the highest total ionic conductivity, i.e., 3.47 × 10?2 S cm?1 at 600 °C with minimum activation energy of 0.69 eV, in PSG-MS30 sample when compared to PSG-MS15 and PSG-MS60. The thermal expansion measurements have been carried out for PSG-MS30 specimen. The highest total ionic conductivity with minimum activation energy and moderate thermal expansion coefficient of PSG-MS30 sample makes the possibility of its use as solid electrolyte in IT-SOFC applications.  相似文献   

13.
Gd2MoB2O9 doped with Sm3+ and Dy3+ were used for this study. The photoluminescence behaviors of Sm3+ and Dy3+ in this phosphor material were investigated by the excitation and emission spectra. The Sm3+-doped Gd2MoB2O9 phosphor powders show a red luminescence, whereas the Dy3+-doped Gd2MoB2O9 phosphor powders show a yellow luminescence. In addition, the optimum doping concentration and the time-resolved luminescence spectroscopy were also investigated.  相似文献   

14.
《Solid State Ionics》2006,177(35-36):3199-3203
A co-dopant strategy is used to investigate the effect that the elastic strain in the lattice has on the grain ionic conductivity of doped ceria electrolytes. Based on critical dopant ionic radius (rc), different compositions in the LuxNdyCe1−xyO2−δ (x + y = 0.05, 0.10, 0.15, and 0.20) system are studied. Dopants are added such that the weighted average dopant ionic radius matches rc for all the compositions. Dense ceramic discs are prepared using conventional solid oxide route and sintering methods. Precise lattice parameter measurements are used to calculate the lattice strain. The ionic conductivity of the samples is measured in the temperature range of 250 °C to 700 °C using two-probe electrochemical impedance spectroscopy technique. The elastic strain present in LuxNdyCe1−xyO2−δ system is found to be negligible when compared to LuxCe1−xO2−δ (negative) and NdxCe1−xO2−δ (positive) systems. Grain ionic conductivity of LuxNdyCe1−xyO2−δ (where x + y = 0.05) at 500 °C is observed to be 1.9 × 10 3 S/cm which is twice as high as that of Lu0.05Ce0.95O2−δ. These results extend the validity of the rc concept as a strategy for co-doping ceria electrolytes and open new designing avenues for solid oxide electrolytes with enhanced ionic conductivity.  相似文献   

15.
Microstructure, interfacial resistance, and activation energy for composite cathodes consisting of 50 wt% (La0.85Sr0.15)0.9MnO3-δ (LSM) and 50 wt% Sm0.2Ce0.8O1.90 (SDC) were studied for intermediate-temperature solid oxide fuel cells based on SDC electrolytes. Microstructure and interfacial resistance were greatly influenced by the characteristics of starting powder and temperatures sintering the electrodes. Optimum sintering temperatures were 1100 and 950 °C, respectively, for electrodes with SDC prepared using oxalate coprecipitation technique (OCP) and glycine-nitrate process (GNP). Area-specific resistances determined using impedance spectroscopy were 0.47 and 0.92 Ω cm2 at 800 °C for LSM-SDC/OCP and LSM-SDC/GNP, respectively. The high electrochemical performance is attributed to small grain size, high porosity, and high in-plane electrical conductivity of composite cathode, demonstrating the dramatic effects of microstructure on electrode performance. To increase the electrode performance, it is critical to enhance the diffusion rate of oxygen species.  相似文献   

16.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

17.
We investigated the synergistic influences of synthesis methods (solid-state reaction vs. sol-gel process) and Zr4+ doping on the structure and ionic conductivity of perovskite-structured Li0.5La0.5TiO3 (LLTO) solid electrolytes. The lithium-ion conductivity of Li0.5La0.5Ti1???x Zr x O3 ceramic specimens was evaluated as a function of x value and compared carefully between those two synthesis methods. Regarding the conductivity, sol-gel process is better for the synthesis of LLTO than solid-state reaction. As a result, the highest grain conductivity is obtained in the sol-gel-derived pure LLTO sample with x?=?0, reaching 1.10?×?10?3 S?·?cm?1. Partial substitution of Zr4+ enlarges the LLTO’s grain aggregate size and increases the total superficial area of aggregates. Consequently, Zr4+ substitution not only affects the grain (bulk) conductivity, but more importantly, also improves the grain boundary conductivity and the total conductivity. The highest total conductivity is 5.84?×?10?5 S?·?cm?1 with x?=?0.04 by sol-gel process.  相似文献   

18.
Ce3+ and Dy3+-doped LiAl5O8 were synthesized in the present study. The luminescence properties of Ce3+ and Dy3+, and the energy transfer from Ce3+ to Dy3+ were investigated. The Ce3+ species in LiAl5O8 emit one broad band that peaks at 351 nm under the excitation of ultraviolet light, which is attributed to the 5d–4f transitions of Ce3+. The luminescence of Dy3+ in singly doped LiAl5O8 can not be detected due to its low oscillator strength. However, Dy3+ emit intense blue (477 nm) and yellow (569 nm) light after the introduction of Ce3+. This phenomenon demonstrates that there exists effective energy transfer from Ce3+ to Dy3+, which occurs because the emission spectrum of Ce3+ perfectly overlays the excitation spectrum of Dy3+. The energy transfer from Ce3+ to Dy3+ is performed through dipole–dipole interactions. The experimental results show that LiAl5O8 co-doped with Ce3+ and Dy3+ can be a potential two-band (blue and yellow) phosphor.  相似文献   

19.
Radio-, photo- and thermally stimulated—luminescence (RL, PL, TSL) measurements have been performed on SiO2 sol-gel glasses doped by 0.1 mol% Ce and 3 mol% Gd, and on (0.1 mol% Ce, 3 mol% Gd) co-doped samples. Ce3? 5d-4f emission peaking at about 2.7 eV has been observed in the RL of SiO2: 0.1 mol% Ce, while the typical 6P-8S emission of Gd3? centred at 3.97 eV has been detected in SiO2: 3 mol% Gd. The co-doped sample displays both 5d-4f Ce3? and 6P-8S Gd3? emissions with reduced intensities with respect to those observed in the singly doped glasses. Moreover, in co-doped glasses the PL time decay patterns of both rare earth ions show a non exponential dependence and are significantly shortened. To explain such an effect non radiative de-excitation of both RE ions excited states involving energy transfers to defect levels is suggested. Bidirectional Gd3? ? Ce3? energy transfers could also occur. Complementary TSL measurements put in evidence the existence of broad glow peaks at about 100 K and 220 K. The TSL spectra feature the RE ions emissions.  相似文献   

20.
The effect of Sr by Gd substitution on the structural, thermomechanical, electrical, and electrochemical properties of SrTi0.5Fe0.5O3–δ was investigated in the present work. The powders were synthesized by a solid-state reaction method at 1150 °C with following sintering of the ceramic samples at 1350 °C. The unit cell parameters of the sintered Sr1–x Gd x Ti0.5Fe0.5O3–δ (x = 0–0.4) ceramics were found to decrease with a gradual increase in Gd content, and a change in the crystal symmetry from cubic to tetragonal at x ≥ 0.1 was observed. It was found that the Gd doping enhanced the stability of the ceramic samples in a reducing atmosphere and reduced the thermal expansion coefficient value. Gd doping in the amount of 5 mol% can be used for long-term stabilization of the SrTi0.5Fe0.5O3–δ material’s conductivity in reducing atmospheres with no significant alteration to the transport properties and oxygen permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号