首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel sensor consisting of nitrogen-doped multi-walled carbon nanotubes was fabricated by means of chemical vapor deposition technique with decomposition of acetonitrile onto oxidized silicon wafer using ferrocene as catalyst. The electrochemical response of carbon nanotubes-based sensor towards oxidation of paracetamol to N-acetyl-p-quinone imine was investigated in phosphate buffer solution (pH 7.0) by means of standard electrochemical techniques. A quasi-reversible response for oxidation of paracetamol was identified on carbon nanotubes-based sensor with detection limit and sensitivity of 0.485 μM and 0.8406 A M?1 cm?2, respectively. It was found that the nitrogen doping in carbon nanotubes enhances the sensor's detection ability. Namely, electrochemical studies performed on film consisting of pristine carbon nanotubes reveal as well quasi-reversible response towards oxidation of paracetamol but nevertheless poorer detection ability and sensitivity (0.950 μM; 0.601 A M?1 cm?2). The findings strongly suggest the application of nitrogen-doped carbon nanotubes in biosensing.  相似文献   

2.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

3.
Films of LiCoO2 are prepared on metallized silicon substrates using RF-magnetron sputtering technique. The microstructural properties of the films are investigated by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The films deposited at a substrate temperature of 250 °C with subsequent annealing at 650 °C exhibited hexagonal layered structure with R $ \overline 3 $ m symmetry. The kinetics of lithium ions in LiCoO2 film cathode host matrix and its cycleability are studied in aqueous Pt//LiCoO2 and nonaqueous Li//LiCoO2 cell. Both the electrochemical cells at same current density of 50 μA cm?2 delivered the same initial discharge capacity of about 60 μA h?cm?2 μm?1 with a chemical diffusion coefficient of ca. 10?11 cm2 s?1 for Li+ ions. The capacity fade rates for the Pt//LiCoO2 and Li//LiCoO2 cells, in average are 3.0 and 0.15 % per cycle, respectively, for the first 20 cycles. The Pt//LiCoO2 cell is found to be advantageous for small number of cycles and is cost effective than the Li//LiCoO2 cell.  相似文献   

4.
Novel poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with different contents of nano-SiO2 using urea as a pore-forming agent were prepared by phase inversion method, and the desired CPEs were obtained by being immersed into 1.0 M LiPF6-EC/DMC/EMC electrolytes for 0.5 h. The physicochemical properties of the CPEs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The results show that the CPEs doped with 10 % nano-SiO2 exhibit the best performance, in which the SEM images of the as-prepared polymer membranes present homogeneous surface and abundant micropores; the uptake ratio is up to 107.4 %; EIS and LSV analysis also show that the ionic conductivity at room temperature and electrochemical stability window of the modified membrane can reach 3.652 mS cm?1 and 5.0 V, respectively; the interfacial resistance R i is 380 Ω cm?2 in the first day,then increases rapidly to a stable value about 500 Ω cm?2 in a 5-day storage at room temperature. The Li/As-fabricated CPEs/LiCoO2 cell also shows excellent charge-discharge performance, which suggests that it can be a potential electrolyte for the lithium-ion battery.  相似文献   

5.
In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10?9 and 3 × 10?10 cm2 s?1, respectively, for transfer in the bulk and 10?12 cm2 s?1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10?10 and 0.9–5 × 10?10 cm2 s?1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10?10 cm2 s?1 for lithiated (at a potential of 3.5 V) and 2.3 × 10?9 cm2 s?1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10?11 cm2 s?1 for anodic and 3.4 × 10?11 cm2 s?1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.  相似文献   

6.
A novel hydrothermal emulsion method is proposed to synthesize mesoporous NiMoO4 nanosphere electrode material. The size of sphere-shaped NiMoO4 nanostructure is controlled by the mass ratio of water and oil phases. Nickel acetate tetrahydrate and ammonium heptamolybdate were used as nickel and molybdate precursors, respectively. The resultant mesoporous NiMoO4 nanospheres were characterized by X-ray diffraction, N2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The electrochemical performances were evaluated by cyclic voltammetry (CV), cyclic chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in 6 M KOH solution. The typical mesoporous NiMoO4 nanospheres exhibit the large specific surface area of 113 m2 g?1 and high specific capacitance of 1443 F g?1 at 1 A g?1, an outstanding cyclic stability with a capacitance retention of 90 % after 3000 cycles of charge-discharge at a current density of 10 A g?1, and a low resistance.  相似文献   

7.
A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm?1) and combination υ 1 + υ 3 band (~3,610 cm?1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm?1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm?1, paired with the R(28) line near 3,633.08 cm?1. This combination yields high temperature sensitivity (ΔE” = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600–1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.  相似文献   

8.
Herein, 3D graphene/nickel foam (GE/NF) composite matrix was successfully fabricated by using NF as template through a self-catalytic thermal chemical vapor deposition process. By using the prepared GE/NF as substrate, CoS nanosheets were deposited via a facial one-step electrochemical deposition method. Owing to the advantage of GE in boosting the electrical contact between the electroactive host material and current collector, the as-prepared 3D CoS/GE/NF electrode demonstrated a superior capacitance value of 2308 F g?1 at 1 A g?1 and a high rate capability of 70.49% at 20 A g?1. After depositing the polypyrrole (PPY) film on 3D CoS/GE/NF electrode, the electrochemical performance of CoS was further greatly improved and delivered an extremely high capacitance value of 3450 F g?1 at 1 A g?1, with good rate capability (62.61% at 20 A g?1) and improved cycling stability. The enhanced electrochemical performance of PPY/CoS/GE/NF electrode is closely related to the advantage of PPY film in increasing the electrical conductivity and reinforcing the integrity of electrode.  相似文献   

9.
In this study, poly(P-phenylenediamine/ZnO) (PpPD/ZnO) nanocomposite (NC) under ultrasonic conditions was synthesized and characterized. The presence of zinc oxide nanoparticles changed the morphology of PpPD considerably as confirmed by SEM observations. Hydrazine electrooxidation at novel modified carbon paste electrodes (CPE) with supported NC was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) techniques. Obtained results showed that the NC increases the surface catalytic activity of CPE toward hydrazine electrooxidation. The electrocatalytic current density increased linearly with hydrazine concentration, and the detection limit and sensitivity are determined to be 24 μM and 0.172 mA cm?2 mM?1, respectively. As revealed by the EIS measurements, the increased conductivity and decreased R ct are owing to the presence of ZnO NPs in the PpPD matrix. The CA results indicated that hydrazine electrooxidation results in higher steady-state current density on CPE/PpDP/ZnO electrode system compared to the CPE/PpDP and CPE electrodes.  相似文献   

10.
One-dimensional NiMoO4 · xH2O nanorods were synthesized by a facile template-free hydrothermal method as a potential electrode material for supercapacitors. The influences of reaction temperature, reaction time, and nickel source on the properties of resultant samples were investigated. Electrochemical data reveal that the as-synthesized one-dimensional NiMoO4 · xH2O nanorod superstructures can deliver a remarkable specific capacitance (SC) of 1131 F g?1 at a current density of 1 A g?1 and remain as high as 914 F g?1 at 10 A g?1 in a 6 M KOH aqueous solution. Moreover, there is only 6.2 % loss of the maximum SC after 1000 continuous charge–discharge cycles at the high current density of 10 A g?1. Such outstanding electrochemical performance may be owing to the unique one-dimensional hierarchical structures, which can facilitate the electrolyte ions and electrons to easily contact the NiMoO4 nanorod building blocks and then allow for sufficient faradaic reactions to take place, even at high current densities.  相似文献   

11.
An ionic liquid-modified carbon nanotubes paste electrode (IL/CNTPE) has been fabricated using hydrophilic ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) as a binder. This electrode showed enhanced electrochemical response and strong analytical activity towards the direct electrochemical oxidation of diclofenac (DCF). The electron transfer coefficient, α, and charge transfer resistance (R ct) of DCF at the modified electrode were calculated. Under optimal conditions at pH 7.0, the anodic peak currents increased linearly with the concentration of DCF in the range of 0.5–300 μmol L?1 with a detection limit of 0.2 μmol L?1 (3σ). The interferences of foreign substances were investigated. Differential pulse voltammetry was used to check the applicability of the proposed sensor to the determination of DCF in real samples with satisfactory results.  相似文献   

12.
In the present paper, the use of a carbon paste electrode modified with 1-(4-(1, 3-dithiolan-2-yl)-6, 7-dihydroxy-2-methyl-6, 7-dihydrobenzofuran-3-yl)ethanone (DDE) and TiO2 nanoparticles prepared by a simple and rapid method was described. The modified electrode showed excellent properties for electrocatalytic oxidization of epinephrine (EP), acetaminophen (AC) and folic acid (FA). The apparent charge transfer rate constant, k s?=?1.14 s?1, and transfer coefficient, α?=?0.54, for electron transfer between the modifier and carbon paste electrode were calculated. It has been found that under optimum condition (pH?=?7.0) in cyclic voltammetry, the oxidation of EP occurs at a potential about 280 mV less positive than that of an unmodified carbon paste electrode. The values of transfer coefficients (α?=?0.46), catalytic rate constant (k?=?1.2?×?104 M?1 s?1) and diffusion coefficient (D?=?2.70?×?10?5 cm2 s?1) were calculated for EP. Differential pulse voltammetry (DPV) exhibited two linear dynamic ranges of 0.5 to 50.0 μM and 50.0 to 1,000 μM for EP. This modified electrode is quite effective not only for the detection of EP, AC and FA but also for the simultaneous determination of these species in a mixture. The limit of detection for EP, AC and FA is 0.10, 1.80 and 2.36 μM, respectively.  相似文献   

13.
ZnCo2O4 nanoflakes were directly grown on Ni foam via a two-step facile strategy, involving cathodic electrolytic electrodeposition (ELD) method and followed by a thermal annealing treatment step. The results of physical characterizations exhibit that the mesoporous ZnCo2O4 nanoflakes have large electroactive surface areas (138.8 m2 g?1) and acceptable physical stability with the Ni foam, providing fast electron and ion transport sites. The ZnCo2O4 nanoflakes on Ni foam were directly used as integrated electrodes for supercapacitors and their electrochemical properties were measured in 2 M KOH aqueous solution. The ZnCo2O4 nanoflake electrode exhibits a high capacitance of 1781.7 F g?1 at a current density of 5 A g?1 and good rate capability (62% capacity retention at 50 A g?1). Also, an excellent cycling ability at various current densities from 5 to 50 A g?1 was obtained and 92% of the initial capacitance maintained after 4000 cycles. The results demonstrate that the proposed synthesis route is cost-effective and facile and can be developed for preparation of electrode materials in other electrochemical supercapacitors.  相似文献   

14.
V. P. Ruban 《JETP Letters》2016,104(12):868-872
The dynamics of a vortex filament in a Bose–Einstein condensate whose equilibrium density in the reference frame rotating at the angular velocity Ω is Gaussian with the quadratic form r·D?r has been considered. It has been shown that the equation of motion of the filament in the local-induction approximation permits a class of exact solutions in the form R(β, t) = βM(t) + N(t) of a straight vortex, where β is the longitudinal parameter and is the time. The vortex slips over the surface of an ellipsoid, which follows from the conservation laws N · D?N=C 1 and M · D?N=C 0=0. The equation of the evolution of the tangential vector M(t) appears to be closed and has integrals of motion M ·D?M=C 2 and (|M| ? M· G?Ω) = C, with the matrix G? = 2(I?TrD? ? D?)?1. Crossing of the respective isosurfaces specifies trajectories in the phase space.  相似文献   

15.
A simple sucrose-assisted combustion and subsequent high-temperature calcination route have been employed to prepare hierarchical porous ZnMn2O4 nanostructure. When used as an electrode for supercapacitor, the ZnMn2O4 electrode displays a high specific capacitance of 411.75 F g?1 at a current density of 1 A g?1, remarkable capacitance retention rate of 64.28 % at current density of 32 A g?1 compared with 1 A g?1, as well as excellent cycle stability (reversible capacity retention of 88.32 % after 4000 cycles). The outstanding electrochemical performances are mainly attributed to its hierarchical porous architecture, which provides large reaction surface area, fast ion and electron transfer, and good structure stability. All these impressive results demonstrate that ZnMn2O4 shows promise for its application in supercapacitors.  相似文献   

16.
Nickel-cobalt layered double hydroxides (NiCo-LDH) were successfully deposited on nickel foam by a facile hydrothermal method using polyvinyl pyrrolidone (PVP) as the structure-directing reagent. The effect of PVP on the morphology and electrochemical performance of binder-free NiCo-LDH electrode for supercapacitor were investigated in detail. The prepared NiCo-LDH presented good dispersivity and appeared different flower-like structure via the addition of PVP. Specially, the NiCo-LDH electrode using 1 g of PVP exhibited a superior performance with a high-specific capacity of 724.9 C g?1 at a current density of 1 A g?1 and 577.1 C g?1 at 10 A g?1. In addition, a hybrid supercapacitor (HSC) based on the optimized NiCo-LDH as positive electrode and activated carbon as negative electrode was assembled with 6 M KOH as the electrolyte. The HSC device can deliver an energy density of 32.3 Wh kg?1 at the power density of 387.1 W kg?1. Moreover, the HSC device exhibited a good cycling stability with a retention rate of 94.0% after 2000-cycle charge-discharge test at 3 A g?1.  相似文献   

17.
Double-walled core-shell structured Si@SiO2@C nanocomposite has been prepared by calcination of silicon nanoparticles in air and subsequent carbon coating. The obtained Si@SiO2@C nanocomposite demonstrates a reversible specific capacity of about 786 mAh g?1 after 100 cycles at a current density of 100 mA g?1 with a capacity fading of 0.13 % per cycle. The enhanced electrochemical performance can be due to that the double walls of carbon and SiO2 improve the electronic conductivity and enhance the compatibility of electrode materials and electrolyte as a result of accommodating the significant volumetric change during cycles. The interlayer SiO2 may release the mechanical strain and enhance the interfacial adhesion between carbon shell and silicon core.  相似文献   

18.
The electrooxidation of hydrochlorothiazide (HCT) at the surface of a benzoylferrocene modified multi-walled carbon nanotube paste electrode was studied using electrochemical approaches. Under the optimized conditions (pH 7.0), the square wave voltammetric peak current of HCT increased linearly with HCT concentration in the ranges of 6.0?×?10?7 to 3.0?×?10?4 M. The detection limit was 9.0?×?10?8 M HCT. The diffusion coefficient (D?=?1.75?×?10?5 cm2/s) and electron transfer coefficient (α?=?0.45) for HCT oxidation were also determined. The proposed sensor was successfully applied for the determination of HCT in human urine and tablet samples.  相似文献   

19.
Electrofabrication of multilayer Fe–Ni alloy coatings were accomplished successfully on mild steel and their corrosion behaviors were studied. Multilayer comprised of alternatively formed ‘nano-size’ layers of Fe–Ni alloy of different composition have been produced from a single bath having Fe2+and Ni2+ ions using modulated (i.e. periodic pulse control) current density (cd). The deposition conditions were optimized for both composition and thickness of individual layers for best performance of the coatings against corrosion. The deposits were analyzed using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Hardness Tester, electrochemical AC and DC methods respectively. The multi layered deposits showed better corrosion resistances compared to the monolayer Fe–Ni (CR = 3.77 mm year?1) coating deposited using DC from the same bath; the maximum corrosion resistance being shown by the coating having 300 layers, deposited at cyclic cathodic current densities of 2.0 and 4.0 A dm?2 (CR = 0.03 mm year?1). Drastic improvement in the corrosion performance of multilayer coatings were explained in the light of changed kinetics of mass transfer at cathode and increased surface area due to modulation and layering.  相似文献   

20.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号