首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cadmium selenide (CdSe) thin films have been electrodeposited on the titanium or ITO substrate in an electrolyte containing CdSO4 and H2SeO3 at pH = 2.50 and temperature 298 K. Influence of different deposition potentials on the surface morphology and crystal structure of CdSe films has been discussed. Compared with other deposition potentials (−0.65, −0.71 and −0.72 V versus SCE), the nearly stoichiometric CdSe nanocrystalline films with smaller grain sizes of 80 nm were obtained from 0.25 M CdSO4 + 0.25 mM H2SeO3 + 0.25 M Na2SO4 solution at deposition potential of −0.70 V versus SCE. X-ray diffraction, atomic force microscope and scanning electron microscope were used to measure structure and morphology of CdSe films. The results indicated that the electrodeposited films were the smooth, compact and uniform at deposition potentials of −0.70 V versus SCE.  相似文献   

2.
A series of apatite-type La–Ge–O ceramics were prepared and their cation-defect at the 4f+6h sites and oxide ion-defect at 2a site were investigated. In LaxGe6O12+1.5x ceramics of x=6–12, the higher conductivities were obtained in the region of apatite composition, Lax(GeO4)6O1.5x−12 (x=8–9.33), and the highest conductivity was achieved for La9(GeO4)6O1.5 (x=9), where the number of cation (La3+) occupying the 4f+6h sites is 9 and the number of oxide ion occupying the 2a site is 1.5. The ceramics with cation- and oxide ion-defects were La9−0.66xSrx(GeO4)6O1.5 (x=0–1), La9−1.33xZrx(GeO4)6O1.5 (x=0–1), La9−xSrx(GeO4)6O1.5−0.5x (x=0–3), La9−xZrx(GeO4)6O1.5+0.5x (x=0–1), Lax(GeO4)3x−21(AsO4)27−3xO1.5 (x=0–3), Lax(GeO4)33−3x(AlO4)3x−27O1.5 (x=0–3), La9(GeO4)6−x (AlO4)xO1.5−0.5x (x=0–3), La9(GeO4)6−x(AsO4)xO1.5+0.5x (x=0–1), La9.33−xSrx(GeO4)6O2−0.5x (x=0–1.2) and Lax(GeO4)4.5(AlO4)1.5O1.5x−12.75 (x=8.8–9.83), which were prepared by the partial substitution of La3+and GeO44−of the basic apatite La9(GeO4)6O1.5 with Sr2+ or Zr4+ and AlO45− or AsO43−. Such substitutions lowered the conductivity of La9(GeO4)6O1.5. These results were discussed by the electrostatic interaction between Sr2+, Zr4+, AlO45− or AsO43− and oxide ion as a conductive species.  相似文献   

3.
A solid state ionic device to titrate electrolytes in water was produced, and the performance of the device was examined. The device named the coulometric titration apparatus is a three-component electrochemical cell like an electrodialyzer. The central component, the analyzing room, is a container of the sample solution. The sample solution, 10−1 M H2SO4, NaOH, Na2SO4, or 10−7–10−2 M Na2SO4, is separated from the cathode and the anode room solutions, 10−2 M H2SO4, NaOH, or Na2SO4, by Nafion-117 and Tosflex IE-SF34 membranes working as the anion and the cation blocking electrodes, respectively. The quantity of electricity to extract whole electrolytes in the sample solution is evaluated from the peak area of the titration curve. The sample concentration is successfully determined by the calibration curve method, with the quantity of electricity and the sample volume (6 ml) in the range from 10−1 to 10−5 M.  相似文献   

4.
Oxygen tracer diffusion (D*) and surface exchange rate constant (k*) have been measured, using isotopic exchange and depth profiling by secondary ion mass spectrometry (SIMS), in La1−xSrxFe0.8Cr0.2O3−δ (x=0.2, 0.4 and 0.6). Measurements were made as a function of temperature (700–1000 °C) and oxygen partial pressure (0.21–10−21 atm) in dry oxygen, water vapour and water vapour/hydrogen/nitrogen mixtures. At high oxygen activity, D* was found to increase with increasing temperature and Sr content. The activation energies for D* in air are 2.13 eV (x=0.2), 1.53 eV (x=0.4) and 1.21 eV (x=0.6). As the oxygen activity decreases, D* increases as expected qualitatively from the increase in oxygen vacancy concentration. Under strongly reducing conditions, the measured values of D* at 1000 °C range from 10−8 cm2 s−1 for x=0.2 to 10−7 cm2 s−1 for x=0.4 and 0.6. The activation energies determined at constant H2O/H2 ratio are 1.21 eV (x=0.2), 1.59 eV (x=0.4) and 0.82 eV (x=0.6).

The surface exchange rate constant of oxygen for the H2O molecule is similar in magnitude to that for the O2 molecule and both increase with increasing Sr concentration.  相似文献   


5.
The a.c. conductivity behaviour in the 20–300 K temperature range has been investigated for (Ag2S)x(AgPO3)1−x and (Ag2SO4)x(AgPO3)1−x glasses at various salt contents (x). The temperature dependence at selected frequencies in the radioand micro-wave region displays several relaxational contributions which are indistinct in the frequency domain. The low temperature experimental data are discussed and a proposed ‘new universality’ has been examined.  相似文献   

6.
Superconductivity and crystallographic properties of La2 − xMxCuO4 − δ (M = Na, K) are studied. In the La2 − xMxCuO4 − δ system, superconductivity is detected for x 0.2. Oxygen content analysis shows that the system has more oxygen vacancies than the La2 − xSrxCuO4 − δ system. These oxygen vacancies may reduce the hole concentration, and high Na-doping is needed to produce superconductivity. In the La2 − xKxCuO4 − δ system, superconductivity is observed for the first time. Resistivity and magnetic susceptibility measurements show that Tc(onset) is 40 K and the Meissner volume fraction is about 4% for x = 0.7. The system changes from orthorhombic to a tetragonal K2NiF4 structure at x ≈ 0.3 and only tetragonal samples show superconductivity.  相似文献   

7.
The maximum solid solubility of gallium in the perovskite-type La1−xSrxFe1−yGayO3−δ (x=0.40–0.80; y=0–0.60) was found to vary in the approximate range y=0.25–0.45, decreasing when x increases. Crystal lattice of the perovskite phases, formed in atmospheric air, was studied by X-ray diffraction (XRD) and neutron diffraction and identified as cubic. Doping with Ga results in increasing unit cell volume, while the thermal expansion and total conductivity of (La,Sr)(Fe,Ga)O3−δ in air decrease with gallium additions. The average thermal expansion coefficients (TECs) are in the range (11.7–16.0)×10−6 K−1 at 300–800 K and (19.3–26.7)×10−6 K−1 at 800–1100 K. At oxygen partial pressures close to atmospheric air, the oxygen permeation fluxes through La1−xSrxFe1−yGayO3−δ (x=0.7–0.8; y=0.2–0.4) membranes are determined by the bulk ambipolar conductivity; the limiting effect of the oxygen surface exchange was found negligible. Decreasing strontium and gallium concentrations leads to a greater role of the exchange processes. As for many other perovskite systems, the oxygen ionic conductivity of La1−xSrxFe1−yGayO3−δ increases with strontium content up to x=0.70 and decreases on further doping, probably due to association of oxygen vacancies. Incorporation of moderate amounts of gallium into the B sublattice results in increasing structural disorder, higher ionic conductivity at temperatures below 1170 K, and lower activation energy for the ionic transport.  相似文献   

8.
Phase evolution in the Bi---Sr---Ca---Cu---Al---O system was studied. Two Al-containing phases BiSr1.5Ca0.5Al2Oz and (Sr1−xCax)3Al2O6 (x = 0.4 − 0.45) were determined to be chemically compatible with Bi2.18Sr2CaCu2O8+x (Bi-2212) at temperatures of the samples processing. The phase equilibria in the title system were investigated above the solidus temperature. The BiSr1.5Ca0.5Al2Oz was found to be in equilibrium only with the melt and the (Sr1−xCax)3Al2O6 phase. This latter aluminate equilibrated with Ca,Sr cuprates, CaO, the Cu-free phase, and the liquid. The melting and solidification in Bi-2212, doped with the aluminate, corresponded to the reversible reaction Bi-2212 + BiSr1.5Ca0.5Al2Oz ↔ (Sr1−xCax)3Al2O6 + liquid. Two sets of superconducting composite materials with initial compositions Bi-2212 + nBiSr1.5Ca0.5Al2Oz and Bi-2212 + m(Sr1−xCax)3Al2O6 were prepared by solidification from the partial melt. The former material was composed mostly of large Bi-2212 lamellas separated by the BiSr1.5Ca0.5Al2Oz phase, which destroyed superconducting links between Bi-2212 grains. The latter material consisted of a Bi-2212 polycrystalline matrix with high concentration of small (ca. 3 μm) grains of (Sr1−xCax)3Al2O6 imbedded in Bi-2212 lamellas. The Bi-2212 + m(Sr1−xCax)3Al2O6 materials displayed a trend to enhance flux pinning at T = 60 K with the increase of aluminate phase content.  相似文献   

9.
The mixed oxides BixEu1−xVO4 and BiyGd1−yVO4 crystallize in a zircon-type structure, for 0 <x < 0.6 and 0 < y < 0.64, and in a fergusonite-type structure, for 0.94 < x < 1 and 0.93 < y < 1. A process of competition between the dominant and the constrained effects of the lone-pair 6s2 of Bi3+ is discussed. The diffuse reflectance spectroscopic studies of these mixed oxides are presented. The observed broad bands are attributed to charge transfer processes and the sharp peaks in the BixEu1−xVO4 spectra are ascribed to intra-configurational 4f – 4ftransitions of the Eu3+ ion. The broad absorption shift in BiLnVO4 (Ln : Eu and Gd) compounds to the longer wavelengths range, when Bi is introduced in the LnVO4 lattice, is ascribed to charge transfer processes in a Bi-VO4 center and are interpreted assuming a Jahn-Teller effect in the excited state of Bi3+. The concept of an internal pressure of Bi3+ ions is also used to explain the broad A-band shifts.  相似文献   

10.
The LaGa1−xyCoxMgyO3−δ solid solutions with rhombohedrally-distorted perovskite structure were ascertained to form in the concentration range of 0≤y≤0.10 at x=0.60 and 0≤y≤0.20 at x=0.35–0.40. Increasing cobalt content results in increasing electrical conductivity and thermal expansion of the perovskites. Thermal expansion coefficients of the LaGa1−xyCoxMgyO3−δ ceramics were calculated from the dilatometric data to vary in the range of 12.4–19.8×10−6 K−1 at 300–1100 K. Doping La(Ga,Co)O3−δ solid solutions with magnesium leads to increasing oxygen nonstoichiometry, electronic and oxygen ionic conductivity. Oxygen permeation fluxes through LaGa1−xyCoxMgyO3−δ membranes were found to be limited by the bulk ionic conduction and to increase with magnesium concentration, being essentially independent of cobalt content.  相似文献   

11.
Magnetization measurements have been carried out on the Laves phase compounds M(Co1−xAlx)2(M = Y, Lu) up to 42 T. Sharp metamagnetic transitions with small hysteresis are found in Y(Co1−xAlx)2, while broad transitions with large hysteresis are found in Lu(Co1−xAlx)2. The results suggest that the former compounds are magnetically homogeneous but the latter inhomogenous.  相似文献   

12.
A new lithium ionic conductor of the thio-LISICON (LIthium SuperIonic CONductor) family was found in the binary Li2S–P2S5 system; the new solid solution with the composition range 0.0≤x≤0.27 in Li3+5xP1−xS4 was synthesized at 700 °C and characterized by X-ray diffraction measurements. Its electrical and electrochemical properties were studied by ac impedance and cyclic voltammetry measurements, respectively. The solid solution member at x=0.065 in Li3+5xP1−xS4 showed the highest conductivity value of 1.5×10−4 S cm−1 at 27 °C with negligible electronic conductivity and the activation energy of 22 kJ mol−1 which is characteristic of high ionic conduction state. The extra lithium ions in Li3PS4 created by partial substitution of P5+ for Li+ led to the large increase in ionic conductivity. In the solid solution range examined, the minimum conductivity was obtained for the compositions, Li3PS4 (x=0.0 in Li3+5xP1−xS4) and Li4P0.8S4 (x=0.2 in Li3+5xP1−xS4); this conductivity behavior is similar to other thio-LISICON family with the general formula, LixM1−yMy′S4 (M=Si, Ge, and M′=P, Al, Zn, Ga, Sb). Conduction mechanism and the material design concepts are discussed based on the conduction behavior and the structure considerations.  相似文献   

13.
The effects of dopants on the electrical conductivity of the perovskite-type oxide LaInO3 have been investigated. Replacement of La by Sr is the most effective way to enhance the conductivity of LaInO3, whereas Ca substitution for In is rather difficult due to the large difference in the ion radii. The optimum composition is La0.9Sr0.1InO3−δ whose maximum conductivity is 7.6×10−3 S cm−1 at 900°C. The electrical conductivity of La0.9Sr0.1InO3−δ has been measured over a wide range of oxygen partial pressure from pO2=1 to 10−25 atm. P-type and n-type behavior at high and low oxygen partial pressure have been observed, respectively, while at intermediate oxygen partial pressures, the electrical conductivity changes only slightly with the oxygen partial pressure. The concept of a single layer solid oxide fuel cell based on a La0.9Sr0.1InO3−δ ceramic pellet has been tested. A maximum power density of 3 mW cm−2 at 800°C was achieved when dilute H2 and air were used as fuel and oxidizing agent, respectively.  相似文献   

14.
In this paper we report studies on a range of niobate based tungsten bronzes, with a view to analysing their potential as anode materials in SOFCs. Six systems were studied, (Sr1−xBax)0.6Ti0.2Nb0.8O3, Sr0.6−xLaxTi0.2+xNb0.8−xO3, (Sr0.4−xBax)Na0.2NbO3, (Ba1−xCax)0.6Ti0.2Nb0.8O3, Ba0.5−xAxNbO3 (A=Ca, Sr), and Ba0.3NbO2.8, and the electrical conductivities were examined over a range of oxygen partial pressures (10−20–1 bar). All the systems showed good conductivity in low oxygen partial pressures, with values as high as 8 S cm−1 at 930°C (P(O2)=10−20 bar). As the oxygen partial pressure was raised the conductivity dropped showing in most cases an approximate [P(O2)]−1/4 dependence and good re-oxidation kinetics. Of all the samples studied the (Sr1−xBax)0.6Ti0.2Nb0.8O3 and (Ba1−xCax)0.6Ti0.2Nb0.8O3 systems appear most promising for potential use as anode materials in SOFCs.  相似文献   

15.
Mixed ionic–electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3−δ and La0.6Sr0.4Fe0.8Co0.2O3−δ have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm2 at 950°C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. In particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH4, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment.  相似文献   

16.
The magnetic phase diagram of La2(Cu1−xZnx)O4 has been determined from zero-field muon-spin-rotation (ZF-μSR) data taken at LAMPF for 0 ≤ x ≤ 0.10. Antiferromagnetic onset temperatures follow TN(x) from susceptibility measurements on the same samples. However, the order becomes long range, as evidenced by a well-defined internal magnetic field, only at temperatures well below TN. Extrapolation of our results yields TN → 0 K at x = 0.11 for a single (Cu1−xZnx)O2 plane, and comparison with YBa2(Cu1−xZnx)3O6 implies identical disruption of magnetism by Zn doping in the single- and double-plane systems.  相似文献   

17.
The influence of chemical etching with HF on the nature of the surface of amorphous Ni59Nb40Pt1−xSnx alloys has been studied in situ by electrolyte electroreflectance (EER) and ex situ by X-ray photoelectron spectroscopy (XPS). The EER spectrum of the untreated alloy in 0.5 M H2SO4 shows a bipolar band, which disappears after the HF treatment yielding a structureless EER spectrum similar to that of Pt, but reappears after several hours in the 0.5 M H2SO4 electrolyte. This process of dissolution by HF of an oxide species and its reappearance after a few hours cannot be followed by XPS, since the time interval between sample withdrawal from the electrolyte and actual measurement is of a few hours as well. XPS spectra showed the presence of metallic Nb before and after the HF treatment, and that niobium pentoxide was the main species in the as-quenched alloy, but that after treatment with HF it became a minor component, the main one being NbO. The main effect of the HF treatment is to produce a platinum enrichment of the surface, as unequivocally determined by cyclic voltammetry, XPS and EER. After Ar sputtering for 9 min the XPS spectrum of the untreated alloy showed metallic Nb only, while in the HF-treated alloy the peaks of metallic Nb were swamped by those of NbO and some Nb2O5. We interpret this difference as being due to the formation by the HF attack of a porous Nb film which becomes oxidized in the electrolyte and/or during transfer to the spectrometer, and so thick that it is not eliminated by Ar sputtering for 9 min.  相似文献   

18.
Studies on strontium substituted rare earth manganites   总被引:3,自引:0,他引:3  
Sintering, electrical conductivity and thermal expansion behaviour of combustion synthesised strontium substituted rare earth manganites with the general formula Ln1−xSrxMnO3 (Ln=Pr, Nd and Sm; x=0, 0.16 and 0.25) have been investigated as solid oxide fuel cell cathode materials. The combustion derived rare earth manganites have surface area in the range of 13–40 m2/g. Strontium substitution increases the electrical conductivity values in all the rare earth manganites. With the decreasing ionic radii of rare earth ions, the conductivity value decreases. Among the rare earth manganites studied, (Pr/Nd)0.75Sr0.25MnO3 show high electrical conductivity (>100 S/cm). The thermal expansion coefficients of Pr0.75Sr0.25MnO3 and Nd0.75Sr0.25MnO3 were found to be 10.2×10−6 and 10.7×10−6 K−1 respectively, which is very close to that of the electrolyte (YSZ) used in solid oxide fuel cells.  相似文献   

19.
The thermal expansion and low temperature and low temperature specific heat were measured for Y1−xScxMn2. The results are discussed in terms of spin fluctuations and compared with those of Y(Mn1−xAlx)2, which show al local moment character. It is revealed that Y1−xScxMn2 is a typical nearly antiferromagnet in which giant spin fluctuations are thermally excited.  相似文献   

20.
Transport properties of SrCe0.95Y0.05O3−δ were studied by impedance spectroscopy and by measuring open-cell voltage (OCV) and gas permeation. Ionic transference numbers were determined by measuring the OCV of concentration cells and water vapor evolution of an O2/H2 fuel cell. We observed interfacial polarization on the basis of the IV curves obtained by discharging a hydrogen concentration cell or an O2/H2 fuel cell. The observed high protonic conductivity (high proton and low oxide ion transference numbers) makes SrCe0.95Y0.05O3−δ a potential material for hydrogen separation. From proton conductivity measurements, under a given hydrogen partial pressure difference of 4%/0.488%, the hydrogen permeation rate (of a dense membrane with 0.11 cm in thickness) was calculated to be ≈0.072 cm3 (STP) cm−2 min−1 at 800°C, whereas the permeation rate calculated from short-circuit current measurements was ≈0.023 cm3 (STP) cm−2 min−1 at 800°C. The difference between calculated and observed permeation rates is probably due to interfacial polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号