首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A nonlinear boundary slip model consisting of an initial slip length and a critical shear rate was used to study the nonlinear boundary slip of squeeze fluid film confined between two approaching spheres. It is found that the initial slip length controls the slip behavior at small shear rate, but the critical shear rate controls the boundary slip at high shear rate. The boundary slip at the squeeze fluid film of spherical surfaces is a strongly nonlinear function of the radius coordinate. At the center or far from the center of the squeeze film, the slip length equals the initial slip length due to the small shear rate. However, in the high shear rate regime the slip length increases very much. The hydrodynamic force of the spherical squeeze film decreases with increasing the initial slip length and decreasing the critical shear rate. The effect of initial slip length on the hydrodynamic force seems less than that of the critical shear rate. When the critical shear rate is very small the hydrodynamic force increases very slowly with a decrease in minimum film thickness. The theoretical predictions agree well with the experiment measurements.  相似文献   

2.
吕刚 《实验力学》1997,12(3):468-474
完成了简谐激励下水中平行圆板的挤压膜振动实验.用最小二乘法识别出非线性粘性挤压膜力模型中的4个系数.不同挤压膜厚、不同频率和不同振幅情况的数值模拟结果与实验值吻合较好.研究结果表明,所用模型可较好地描述粘性挤压膜运动,识别出的系数在一定范围内给出良好精度的数值模拟.  相似文献   

3.
This is a study of an electrically conducting flow in a squeeze film between two infinite strips where one of the strips has a porous bounding surface backed by a solid wall. The analysis is directed to study the interaction of a transverse magnetic field with the coupled flows in the squeeze film and the porous medium including the slip velocity at the porous bounding surface. Expressions for load capacity and thickness-time are obtained. It is observed that the magnetic field increases the load capacity and response times of squeeze films. This effect is more marked for small values of the permeability K.  相似文献   

4.
The squeeze flow of a rigid-plastic medium between parallel disks is considered for small gaps with partial wall slip. The stress distribution and the squeeze force between parallel disks of a rigid-plastic medium with the following four different slip boundary conditions are obtained. (1) The Coulombic friction condition is applied, and the stress distribution on the wall is derived, which is linear or exponential distribution in the no-slip area or slip area. (2) It is assumed that the slip velocity at the disks increases linearly with the radius up to the rim slip velocity, with the stress distribution and the squeeze force gained. (3) The assumption that the slip velocity at the disks is related to the shear stress component is used, with the stress distribution and the squeeze force obtained, which is equivalent to the result given in (2). (4) Rational velocity components are introduced, and the stress distribution is satisfied.  相似文献   

5.
In this paper, the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined. Based on lubrication theory, the squeeze force is calculated by deriving the pressure and velocity expressions. The results of the normal squeeze force are discussed, and fitting functions of the squeeze and correction coefficients are given. The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state, respectively. Furthermore, the slip correction coefficient decreases with the increase in the velocity. The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.  相似文献   

6.
对多孔状挤压油膜阻尼器控制机构间隙效应的能力进行了探索性研究。采用算例分析了多孔状挤压油膜铰对机构的动态特性的影响,同时对比分析了传统挤压油膜铰与多孔状挤压油膜铰的控制性能。结果表明,多孔状挤压油膜铰可以有效地控制机构的间隙效应,而且对控制工作条件变化较大的机构更具有可行性。  相似文献   

7.
两平行刚性圆盘挤压理想刚塑性介质时压力规律研究   总被引:1,自引:0,他引:1  
两平行刚性圆盘挤压理想刚塑性介质时,通常考虑圆盘与介质的界面之间存在部分滑移,对库仑摩擦条件下的压力规律做了进一步的研究,同时,引入更合理的速度场,假设圆盘边缘处滑移速度一定,介质的滑移速度随着半径线性变化,得到了压力分布规律,对不同的摩擦条件及用不同方法计算得到的结果进行了对比。  相似文献   

8.
Squeezed air film between two closely spaced vibrating microstructures is the important source of energy dissipation and has profound effects on the dynamics of microelectromechanical systems (MEMS). Perforations in the design are one of the methods to model these damping effects. The literature reveals that the analytical modeling of squeeze film damping of perforated circular microplates is less explored; however, these microplates are also an imperative part of the numerous MEMS devices. Here, we derive an analytical model of transverse and rocking motions of a perforated circular microplate. A modified Reynolds equation that incorporates compressibility and rarefaction effects is utilized in the analysis. Pressure distribution under the vibrating microplate is derived by using Green’s function and also derived by finite element method (FEM) to visualize the pressure distribution under perforated and non-perforated areas of the microplate. The analytical damping results are validated with previous renowned analytical models and also with the FEM results. The outcomes confirm the potential of the present analytical model to accurately predict the squeeze film damping parameters.  相似文献   

9.
Consideration is given to the flow of an inelastic ‘power-law’ liquid in a continuous flow squeeze film. This simulates the flow in a conventional squeeze film by continuously injecting fluid into the narrow gap between two plates through the lower plate (Oliver et al. [6]). To zero order in the usual lubrication approximation the results are identical with those for the conventional squeeze film. To first order, useful corrections to the normal force due to the effects of inertia are obtained.  相似文献   

10.
IntroductionThesqueezeflowofafluidbetweentwodisksorspheresisofrelevancetomanyapplications,includingtheformingofpolymermaterials ,squeezeflowrheometerandlubricationofbearings.Thesqueezeflowinteractionbetweensolidparticlesisalsofundamentaltothecomplexrhe…  相似文献   

11.
A form of squeeze film apparatus was recently described in which the movement of one plate towards the other was simulated by the continuous volume generation of liquid over the plate area. The liquid exuded from a large number of holes in the lower plate surface and formed a “continous flow” version of squeeze film apparatus with no moving parts [1]. A later paper gave derivations of equations from which squeeze film load bearing capacity could be evaluated, taking into account viscous, inertial and normal stress effects in the liquid film [2].In order to find the total load in a squeeze film system, it was necessary to obtain the relationship between the first normal stress difference and shear rate for the liquid in use, using an experimental method. At high shear rates, the jet thrust method provided these data [3,4] and from them the load bearing capacity of squeeze films of hot, polymer-thickened oil were predicted [2].A more complete test of the method is possible with a highly elastic liquid because considerable load enhancement due to extra stress is present at moderate deformation rates in squeeze film systems [1,5,6,7]. Thus a 0.1 per cent aqueous polyacrylamide solution gives well-defined load enhancement and (quite independently) the jet thrust method gives the relationship between normal stress and shear rate from which predictions of load enhancement may be made. Furthermore, convergent nozzles may be used in the jet thrust apparatus [3] to measure the stress development in an elastic liquid which is being simulateneously sheared and stretched, a situation which more closely resembles the squeeze film case than that of steady shear.  相似文献   

12.
近年来,壁面滑移在纳米流变学、微流体力学、薄模润滑和微机电系统(MEMS)等领域越来越引起关注。以前大部分研究集中于表面初始极限剪应力对薄模润滑的壁面滑移和流体动力学的影响。本文通过一个极限剪切应力比例系数主要研究了与压力相关的壁面滑移滑动间隙流体动压力产生中的作用,发现极限剪切应力比例系数以相反的两种方式影响着流体膜的流体动力学:在高初始剪应力区使流体动力增加,但在低初始剪应力区使流体动力减小,这意味着就极限剪切应力比例系数影响流体动压力而言,存在一个初始极限剪切应力的转换点。但是在界面滑移存在时,较小的极限剪切应力比例系数总是产生较小的摩擦阻力。  相似文献   

13.
A modified Reynolds equation is used to model the air‐film in a high‐speed squeeze‐film bearing. The axial position of the bearing stator is prescribed as a finite amplitude periodic oscillation. A numerical approach is considered for solving the uncoupled and coupled periodic problems associated with this model. The uncoupled problem requires the computation of the squeeze‐film dynamics when the rotor is held at a fixed axial position and the coupled problem incorporates the additional air–rotor interaction since the rotor position is unknown and modelled as a spring‐mass‐damper system. The details of a Fourier spectral collocation scheme are provided for the reduction of the modified Reynolds equation to a system of non‐linear, first‐order ordinary differential equations in space. Using the Matlab boundary value problem solver bvp4c this system of equations is solved to give the periodic pressure distributions and rotor heights. The high degree of accuracy in the spectral collocation scheme is demonstrated through comparison with an appropriate analytical solution. Further analysis indicates that the direct periodic solver is at least 10 times faster than the equivalent Crank–Nicholson finite‐difference scheme. For changing values of a selected physical parameter the method of arc‐length continuation is employed to track branches of solutions computed using the spectral collocation scheme. A selection of results is presented to demonstrate the range of accessible solutions and the robust nature of the numerical scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In squeeze flow rheometry, the main problem is the boundary condition between the squeezed material and the plates. Therefore, the crucial assumption is to know the location and the shape of the sample part where wall slip may or may not occur. This question is investigated from experimental results. For this, squeeze flow experiments are carried out to visualize the flow pattern at the walls. Influence of boundary conditions is particularly studied using different plate surface condition. As a result, with wall slipping conditions, we propose a flow modelling divided into two zones: a circular central zone of the sample sticks on the plates and, beyond that zone, the sample slips at the plates with friction.  相似文献   

15.
The indentation response of Ni thin films of thicknesses in the nanoscale was studied using molecular dynamics simulations with embedded atom method (EAM) interatomic potentials. A series of simulations were performed in films in the [1 1 1] orientation with thicknesses varying from 4 to 12.8 nm. The study included both single crystal films and films containing low angle grain boundaries perpendicular to the film surface. The simulation results for single crystal films show that as film thickness decreases larger forces are required for similar indentation depths but the contact stress necessary to emit the first dislocation under the indenter is nearly independent of film thickness. The low angle grain boundaries can act as dislocation sources under indentation. The mechanism of preferred dislocation emission from these boundaries operates at stresses that are lower as the film thickness increases and is not active for the thinnest films tested. These results are interpreted in terms of a simple model.  相似文献   

16.
The large deformation behavior of a viscoelastic squeeze film being compressed or extended between two parallel circular plates is studied from a Lagrangian viewpoint. A single integro-differential equation is shown to govern the flow of a rubberlike liquid in this geometry, and the solution is compared with results for a Newtonian squeeze film. Instantaneous solid-like response, small amplitude oscillations, and creep-recovery calculations are presented.  相似文献   

17.
The determination of the parameters of viscoplastic fluids subject to wall slip is a special challenge and accurate results are generally obtained only when a number of viscometers are utilized concomitantly. Here the characterization of the parameters of the Herschel-Bulkley fluid and its non-linear wall slip behavior is formulated as an inverse problem which utilizes the data emanating from capillary and squeeze flow rheometers. A finite element method of the squeeze flow problem is employed in conjunction with the analytical solution of the capillary data collected following Mooneys procedure, which uses dies with differing surface to volume ratios. The uniqueness of the solution is recognized as a major problem which limits the accuracy of the solution, suggesting that the search methodology should be carefully selected.  相似文献   

18.
《Fluid Dynamics Research》2007,39(8):616-631
On the basis of the Stokes micro-continuum theory together with the averaged inertia principle, the combined effects of non-Newtonian couple stresses and convective fluid inertia forces on the squeeze film motion between a long cylinder and an infinite plate are presented. A closed-form solution has been derived for squeeze film characteristics including the film pressure, the load capacity and the response time. Comparing with the Newtonian-lubricant non-inertia case, the combined effects of couple stresses and convective inertia forces provide an increase in the film pressure, the load capacity and the response time. In addition, the quantitative effects of couple stresses and convective inertia forces are more pronounced for cylinder–plate system operating at a larger couple stress parameter and film Reynolds number, as well as a smaller squeeze film height. To guide the use of the present study, a numerical example is also illustrated for engineers when considering both the effects of non-Newtonian couple stresses and fluid convective inertia forces.  相似文献   

19.
20.
The analytical solution is derived for the plane strain stress field around a cylindrical void in a hexagonal close-packed single crystal with three in-plane slip systems oriented at the angle π/3 with respect to one another. The critical resolved shear stress on each slip system is assumed to be equal. The crystal is loaded by both internal pressure and a far-field equibiaxial compressive stress. The deformation field takes the form of angular sectors, called slip sectors, within which only one slip system is active; the boundaries between different sectors are radial lines. The stress fields are derived by enforcing equilibrium and a rigid, ideally plastic constitutive relationship, in the spirit of anisotropic slip line theory. The results show that each slip sector is divided into smaller regions denoted as stress sectors and the stress state valid within each stress sector is derived. It is shown that stresses are unique and are continuous within stress sectors and across stress sector boundaries, but the gradient of stresses is not continuous across the boundaries between stress sectors. The solution shows self-similarity in that the stresses over the entire domain can be determined from the stresses within a small region adjacent to the void by invoking certain scaling and symmetry properties. In addition, the stress state exhibits periodicity along logarithmic spirals which emanate from the void. The results predict that the mean value of in-plane pressure required to activate plastic deformation around a void in a single crystal can be higher than that necessary for a void in an isotropic material and is sensitive to the orientation of the slip systems relative to the void.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号