首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Methyl 2‐(pyrazin‐2‐ylcarbonyl)hydrazinecarbodithioate, C7H8N4OS2, (E1), N′‐[bis(methylsulfanyl)methylidene]pyrazine‐2‐carbohydrazide, C8H10N4OS2, (F1), N′‐[bis(methylsulfanyl)methylidene]‐6‐methoxypyrazine‐2‐carbohydrazide, C9H12N4O2S2, (F2), and methyl 1‐methyl‐2‐(pyrazin‐2‐ylcarbonyl)hydrazinecarbodithioate, C8H10N4OS2, (G1), can be considered as derivatives of classical (thio)amide‐type tuberculostatics, and all are moderately active against Mycobacterium tuberculosis. This study was undertaken in a search for relationships between activity and specific intramolecular interactions, especially conjugations and hydrogen‐bond contacts, and the molecular structures were compared with respective amine analogues, also active against the pathogen. Despite the differences between the amine and carbonyl groups with opposite functions in the hydrogen bond, the two types of structure show a surprisingly similar planar geometry, mostly due to the conjugations aided by the bifurcated intramolecular hydrogen‐bond contact between the N—H group of the central hydrazide group as donor and a pyrazine N atom and an S atom of the dithio function as acceptors. Planarity was suggested to be crucial for the tuberculostatic activity of these compounds. The N‐methylated derivative (G1) showed a significant twist at the N—N bond [torsion angle = −121.9 (3)°] due to the methyl substitution, which precludes an intramolecular N—H...S contact and the planarity of the whole molecule. Nonetheless, the compound shows moderate tuberculostatic activity.  相似文献   

2.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

3.
The emergence of drug‐resistant strains of Mycobacterium tuberculosis has intensified efforts to identify new lead tuberculostatics. Our earlier studies concluded that the planarity of a molecule correlates well with its tuberculostatic activity. According to our hypothesis, only derivatives whose molecules are capable of adopting a planar conformation may show tuberculostatic activity. The structures of three new potentially tuberculostatic compounds, namely N′‐[bis(methylsulfanyl)methylidene]‐N‐methyl‐4‐nitrobenzohydrazide (denoted G1), C11H13N3O3S2, N′‐[bis(benzylsulfanyl)methylidene]‐N‐methyl‐4‐nitrobenzohydrazide (denoted G2), C23H21N3O3S2, and N′‐[(benzylsulfanyl)(methylsulfanyl)methylidene]‐4‐nitrobenzohydrazide (denoted G3), C16H15N3O3S2, were determined by X‐ray diffraction. The significant distortion from planarity caused by the methyl substituent at the N atom of the hydrazide group or the NO2 substituent in the aromatic ring leads to the loss of tuberculostatic activity for G1, G2 and G4 {systematic name: N′‐[bis(methylsulfanyl)methylidene]‐2‐nitrobenzohydrazide}. A similar effect is observed when there are large substituents at the S atoms (G2 and G3).  相似文献   

4.
Three imidazole hydrazone compounds, namely 2‐(4‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[1‐(pyridin‐2‐yl)ethylidene]acetohydrazide, C12H12N6O3, ( 1 ), 2‐(2‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[1‐(pyridin‐2‐yl)ethylidene]acetohydrazide, C12H12N6O3, ( 2 ), and 2‐(2‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[(phenyl)(pyridin‐2‐yl)methylidene]acetohydrazide, C17H14N6O3, ( 3 ), were obtained and fully characterized, including their crystal structure determinations. While all the compounds proved not to be cytotoxic to J774.A1 macrophage cells, ( 1 ) and ( 3 ) exhibited activity against Leishmania chagasi, whereas ( 2 ) was revealed to be inactive. Since both ( 1 ) and ( 3 ) exhibited antileishmanial effects, while ( 2 ) was devoid of activity, the presence of the acetyl or benzoyl groups was possibly not a determining factor in the observed antiprotozoal activity. In contrast, since ( 1 ) and ( 3 ) are 4‐nitroimidazole derivatives and ( 2 ) is a 2‐nitroimidazole‐derived compound, the presence of the 4‐nitro group probably favours antileishmanial activity over the 2‐nitro group. The results suggested that further investigations on compounds ( 1 ) and ( 3 ) as bioreducible antileishmanial prodrug candidates are called for.  相似文献   

5.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

6.
In the racemic crystals of (1S,2R)‐ or (1R,2S)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (I), the enantiomeric mol­ecules form a dimeric structure via the N—H?O cyclic hydrogen bond of the carbamoyl moieties. In the chiral crystals of (—)‐(1S,2R)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (II), the N—­H?O intermolecular hydrogen bond forms a zigzag chain around the twofold screw axis. The melting points and calculated densities of (I) and (II) are 446 and 396 K, and 1.481 and 1.445 Mg m?3, respectively.  相似文献   

7.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

8.
The pyrimidine rings in ethyl (E)‐3‐[2‐amino‐4,6‐bis(dimethylamino)pyrimidin‐5‐yl]‐2‐cyanoacrylate, C14H20N6O2, (I), and 2‐[(2‐amino‐4,6‐di‐1‐piperidylpyrimidin‐5‐yl)methylene]malononitrile, C18H23N7, (II), which crystallizes with Z′ = 2 in the space group, are both nonplanar with boat conformations. The molecules of (I) are linked by a combination of N—H...N and N—H...O hydrogen bonds into chains of edge‐fused R22(8) and R44(20) rings, while the two independent molecules in (II) are linked by four N—H...N hydrogen bonds into chains of edge‐fused R22(8) and R22(20) rings. This study illustrates both the readiness with which highly‐substituted pyrimidine rings can be distorted from planarity and the significant differences between the supramolecular aggregation in two rather similar compounds.  相似文献   

9.
In each of ethyl N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinate, C16H19N5O3, (I), N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinamide, C14H16N6O2, (II), and ethyl 3‐amino‐N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}propionate, C17H21N5O3, (III), the pyrimidine ring is effectively planar, but in each of methyl N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}glycinate, C16H19N5O3, (IV), ethyl 3‐amino‐N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}propionate, C18H23N5O3, (V), and ethyl 3‐amino‐N‐[2‐amino‐5‐formyl‐6‐(piperidin‐4‐yl)pyrimidin‐4‐yl]propionate, C15H23N5O3, (VI), the pyrimidine ring is folded into a boat conformation. The bond lengths in each of (I)–(VI) provide evidence for significant polarization of the electronic structure. The molecules of (I) are linked by paired N—H...N hydrogen bonds to form isolated dimeric aggregates, and those of (III) are linked by a combination of N—H...N and N—H...O hydrogen bonds into a chain of edge‐fused rings. In the structure of (IV), molecules are linked into sheets by means of two hydrogen bonds, both of N—H...O type, in the structure of (V) by three hydrogen bonds, two of N—H...N type and one of C—H...O type, and in the structure of (VI) by four hydrogen bonds, all of N—H...O type. Molecules of (II) are linked into a three‐dimensional framework structure by a combination of three N—H...O hydrogen bonds and one C—H...O hydrogen bond.  相似文献   

10.
The search for new tuberculostatics is an important issue due to the increasing resistance of Mycobacterium tuberculosis to existing agents and the resulting spread of the pathogen. Heteroaryldithiocarbazic acid derivatives have shown potential tuberculostatic activity and investigations of the structural aspects of these compounds are thus of interest. Three new examples have been synthesized. The structure of methyl 2‐[amino(pyridin‐3‐yl)methylidene]hydrazinecarbodithioate, C8H10N4S2, at 293 K has monoclinic (P21/n) symmetry. It is of interest with respect to antibacterial properties. The structure displays N—H…N and N—H…S hydrogen bonding. The structure of N′‐(pyrrolidine‐1‐carbonothioyl)picolinohydrazonamide, C11H15N5S, at 100 K has monoclinic (P21/n) symmetry and is also of interest with respect to antibacterial properties. The structure displays N—H…S hydrogen bonding. The structure of (Z)‐methyl 2‐[amino(pyridin‐2‐yl)methylidene]‐1‐methylhydrazinecarbodithioate, C9H13N4S2, has triclinic (P) symmetry. The structure displays N—H…S hydrogen bonding.  相似文献   

11.
The transtrans conformations adopted by the derivatized bis­(bidentate) chelating N4‐donor ligand 3,6‐bis­(pyrazol‐1‐yl)‐4‐[2‐(4‐thia­morpholino)­ethanesulfanyl]­pyridazine, C16H19N7S2, and an intermediate in its formation, 3,6‐di­chloro‐4‐[2‐(4‐thia­morpholino)­ethanesulfanyl]­pyridazine, C10H13Cl2N3S2, con­trast with the ciscis conformation found previously for 3,6‐bis­(thio­phen‐2‐yl)­pyridazine [Ackers, Blake, Hill & Hubberstey (2002). Acta Cryst. C 58 , o640–o641], which places all four heteroatoms on the same side of the mol­ecule.  相似文献   

12.
In the crystal structure of 2‐acetamido‐N‐benz­yl‐2‐(methoxy­amino)acetamide (3L), C12H17N3O3, the 2‐acetyl­amino­acetamide moiety has a linearly extended conformation, with an inter­planar angle between the two amide groups of 157.3 (1)°. In 2‐acetamido‐N‐benz­yl‐2‐[meth­oxy(meth­yl)­amino]­acetamide (3N), C13H19N3O3, the planes of the two amide groups inter­sect at an angle of 126.4 (4)°, resulting in a chain that is slightly more bent. The replacement of the methoxy­amino H atom of 3L with a methyl group to form 3N and concomitant loss of hydrogen bonding results in some positional/thermal disorder in the meth­oxy­(methyl)­amino group. In both structures, in addition to classical N—H⋯O hydrogen bonds, there are also weak non‐standard C—H⋯O hydrogen bonds. The hydrogen bonds and packing inter­actions result in planar hydro­philic and hydro­phobic areas perpendicular to the c axis in 3L and parallel to the ab plane in the N‐meth­yl derivative. Stereochemical comparisons with phenytoin have identified two O atoms and a phenyl group as mol­ecular features likely to be responsible for the anticon­vulsant activities of these compounds.  相似文献   

13.
Methyl 2‐(3,4‐dichlorobenzoyl)‐1‐methylhydrazinecarbodithioate, C10H10Cl2N2OS2, (F1), butyl 2‐(3,4‐dichlorobenzoyl)‐1‐methylhydrazinecarbodithioate, C13H16Cl2N2OS2, (F2), and 3,4‐dichloro‐N‐(2‐sulfanylidene‐1,3‐thiazinan‐3‐yl)benzamide, C11H10Cl2N2OS2, (F3), were studied by X‐ray diffraction to test our hypothesis that planarity of aryloylhydrazinedithiocarbazic acid esters is a prerequisite for tuberculostatic activity. All compounds examined in this study are inactive and nonplanar due to twists along two specific bonds in the central frame of the molecules. The significant twist at the N—N bond, with an C—N—N—C(S) torsion angle of about 85°, results from repulsion caused by a methyl substituent at the N′ atom of the hydrazide group. The other twist is that within the benzoyl group at the C(O)—Ph bond, i.e. the N—C(=O)—C(phenyl)—C torsion angle: the values found in the studied structures (25–30°) are in agreement with those observed in other compounds containing a similar fragment. As some nonplanar benzoyl derivatives are active, it seems that planarity of the hydrazinedithioate fragment is more important for tuberculostatic activity than planarity of the aryloyl group.  相似文献   

14.
Searches for new tuberculostatic agents are important considering the occurrence of drug‐resistant strains of Mycobacterium tuberculosis . The structures of three new potentially tuberculostatic compounds, namely isopropyl methyl (2‐hydroxybenzoyl)carbonohydrazonodithioate, C12H16N2O2S2, (Z )‐benzyl methyl (2‐hydroxybenzoyl)carbonohydrazonodithioate, C16H16N2O2S2, and dibenzyl (2‐hydroxybenzoyl)carbonohydrazonodithioate propan‐2‐ol monosolvate, C22H20N2O2S2·C3H8O, were determined by X‐ray diffraction. The mutual orientation of the three main fragments of the compounds, namely an aromatic ring, a dithioester group and a hydrazide group, can influence the biological activity of the compounds. In all three of the structures studied, the C(=O)NH group is in the anti conformation. In addition, the presence of the hydroxy group in the ortho position of the aromatic ring in all three structures leads to the formation of an intramolecular hydrogen bond stabilizing the planarity of the molecules.  相似文献   

15.
The crystal structures of 1‐{5‐[4,6‐bis­(methyl­sulfanyl)‐2H‐py­razolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐6‐methyl­sulfanyl‐4‐(pyr­rolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C22H29N9S3, and 6‐methyl­sulfanyl‐1‐{5‐[6‐methyl­sulfanyl‐4‐(pyrrolidin‐1‐yl)‐2H‐pyrazolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐4‐(pyrrolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C25H34N10S2, which differ in having either a pyrrolidine substituent or a methylsulfanyl group, show intermolecular stacking due to aromatic π–π interactions between the pyrazolo­[3,4‐d]­pyrimidine rings.  相似文献   

16.
Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5‐sulfosalicylic acid (H3SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino‐substituted sulfobenzoate ligand 2‐amino‐5‐sulfobenzoic acid (H2asba). We expected that H2asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H2asba in the presence of the auxiliary flexible dipyridylamide ligand N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed‐ligand coordination compound, namely bis(3‐amino‐4‐carboxybenzenesulfonato‐κO1)diaquabis{N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide‐κN}cadmium(II)–N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide–water (1/1/4), [Cd(C7H6NO5S)2(C14H14N4O2)2(H2O)2]·C14H14N4O2·4H2O, (1), which was characterized by single‐crystal and powder X‐ray diffraction analysis (PXRD), FT–IR spectroscopy, thermogravimetric analysis (TG), and UV–Vis and photoluminescence spectroscopic analyses in the solid state. The central CdII atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4‐amino‐3‐carboxybenzenesulfonate (Hasba) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero‐dimensional and 2D is two‐dimensional) interpenetrated supramolecular two‐dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two‐dimensional layers into a three‐dimensional network. The optical properties of complex (1) indicate that it may be used as a potential indirect band gap semiconductor material. Complex (1) exhibits an irreversible dehydration–rehydration behaviour. The fluorescence properties have also been investigated in the solid state at room temperature.  相似文献   

17.
Crystal structures are reported for three substituted 1H‐imidazole‐4,5‐dicarbonitrile compounds used as catalysts for the coupling reaction of nucleoside methyl phosphonamidites, namely 2‐(3′,5′‐dimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C19H14N4, (I), 2‐(2′,4′,6′‐trimethylbiphenyl‐2‐yl)‐1H‐imidazole‐4,5‐dicarbonitrile, C20H16N4, (II), and 2‐[8‐(3,5‐dimethylphenyl)naphthalen‐1‐yl]‐1H‐imidazole‐4,5‐dicarbonitrile, C23H16N4, (III). The asymmetric unit of (I) contains two independent molecules with similar conformations. There is steric repulsion between the imidazole group and the terminal phenyl group in all three compounds, resulting in the nonplanarity of the molecules. The naphthalene group of (III) shows significant deviation from planarity. The C—N bond lengths in the imidazole rings range from 1.325 (2) to 1.377 (2) Å. The molecules are connected into zigzag chains by intermolecular N—H...Nimidazole [for (I)] or N—H...·Ncyano [for (II) and (III)] hydrogen bonds.  相似文献   

18.
In the crystal structures of the conformational isomers hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate monohydrate (pro‐E), C6H10N2O6P2·H2O, (Ia), and hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate (pro‐Z), C6H10N2O6P2, (Ib), the related hydrogen {[(2‐chloropyridin‐1‐ium‐3‐yl)amino](phosphono)methyl}phosphonate (pro‐E), C6H9ClN2O6P2, (II), and the salt bis(6‐chloropyridin‐3‐aminium) [hydrogen bis({[2‐chloropyridin‐1‐ium‐3‐yl(0.5+)]amino}methylenediphosphonate)] (pro‐Z), 2C5H6ClN2+·C12H16Cl2N4O12P42−, (III), chain–chain interactions involving phosphono (–PO3H2) and phosphonate (–PO3H) groups are dominant in determining the crystal packing. The crystals of (Ia) and (III) comprise similar ribbons, which are held together by N—H...O interactions, by water‐ or cation‐mediated contacts, and by π–π interactions between the aromatic rings of adjacent zwitterions in (Ia), and those of the cations and anions in (III). The crystals of (Ib) and (II) have a layered architecture: the former exhibits highly corrugated monolayers perpendicular to the [100] direction, while in the latter, flat bilayers parallel to the (001) plane are formed. In both (Ib) and (II), the interlayer contacts are realised through N—H...O hydrogen bonds and weak C—H...O interactions involving aromatic C atoms.  相似文献   

19.
The title compounds, (2S)‐N‐[5‐(4‐chloro­phenyl)‐2,3‐di­hydro‐6H‐1,3,4‐thia­diazin‐2‐yl­idene]‐2‐[(phenyl­sulfonyl)­amino]­pro­pan­amide, C18H17ClN4O3S2, (I), (2R)‐N‐[5‐(4‐fluoro­phenyl)‐6H‐1,3,4‐thia­diazin‐2‐yl]‐2‐[(phenyl­sulfonyl)amino]­propan­amide, C18H17FN4O3S2, (II), and (2S)‐N‐[5‐(5‐chloro‐2‐thienyl)‐6H‐1,3,4‐thia­diazin‐2‐yl]‐2‐[(phenyl­sulfonyl)­amino]­propan­amide, C16H15ClN4O3S3, (III), are potent inhibitors of matrix metalloproteinases. In all three compounds, the thia­diazine ring adopts a screw‐boat conformation. The mol­ecules of compound (I) show a short intramolecular NAla—H?Nexo hydrogen bond [N?N 2.661 (3) Å] and are linked into a chain along the c axis by Nendo—H?Sendo and Nendo—H?OAla hydrogen bonds [N?S 3.236 (3) and N?O 3.375 (3) Å] between neighbouring mol­ecules. In compound (II), the mol­ecules are connected antiparallel into a chain along the a axis by Nexo—H?OAla and NAla—H?Nendo hydrogen bonds [N?O 2.907 (6) and N?N 2.911 (6) Å]. The mol­ecules of compound (III) are dimerized antiparallel through Nexo—H?Nendo hydrogen bonds [N?N 2.956 (7) and 2.983 (7) Å]. The different hydrogen‐bonding patterns can be explained by an amido–imino tautomerism (prototropic shift) shown by different bond lengths within the 6H‐1,3,4‐thia­diazine moiety.  相似文献   

20.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号