首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

2.
A low‐temperature structure of ginkgolide A monohydrate, (1R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐dimethylethyl)‐hexa­hydro‐4,7b‐di­hydroxy‐8‐methyl‐9H‐1,7a‐epoxymethano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclopenta­[1,2‐d]­furan‐5,9,12(4H)‐trione monohydrate, C20H24O9·H2O, obtained from Mo Kα data, is a factor of three more precise than the previous room‐temperature determination. A refinement of the ginkgolide A monohydrate structure with Cu Kα data has allowed the assignment of the absolute configuration of the series of compounds. Ginkgolide C sesquihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11S,11aR)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b,11‐tetrahydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclopenta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione sesquihydrate, C20H24O11·1.5H2O, has two independent diterpene mol­ecules, both of which exhibit intramolecular hydrogen bonding between OH groups. Ginkgolide J dihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b‐tri­hydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]furo[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione dihydrate, C20H24O10·2H2O, has the same basic skeleton as the other ginkgolides, with its three OH groups having the same configurations as those in ginkgolide C. The conformations of the six five‐membered rings are quite similar across ­ginkgolides A–C and J, except for the A and F rings of ginkgolide A.  相似文献   

3.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

4.
A new iridoid glycoside, methyl (3R,4R,4aS,7S,7aR)‐3‐hydroxy‐7‐methyl‐5‐oxooctahydrocyclopenta[c]pyran‐4‐carboxylate‐3‐O‐β‐d ‐(1′S,2′R,3′S,4′S,5′R)‐glucopyranoside, named loniceroside A, C17H26O10, ( 1 ), was obtained from the aerial parts of Lonicera saccata. Its structure was established based on an analysis of spectroscopic data, including 1D NMR, 2D NMR and HRESIMS, and the configurations of the chiral C atoms were determined by X‐ray crystallographic analysis. The single‐crystal structure reveals that the cyclopenta[c]pyran scaffold is formed from a five‐membered ring and a chair‐like six‐membered ring connected through two bridgehead chiral C atoms. In the solid state, the glucose group of ( 1 ) plays an important role in constructing an unusual supramolecular motif. The structure analysis revealed adjacent molecules linked together through intermolecular O—H…O hydrogen bonds to generate a banded structure. Furthermore, the banded structures are linked into a three‐dimensional network by interesting hydrogen bonds. Biogenetically, compound ( 1 ) carries a glucopyranosyloxy moiety at the C‐3 position, representing a rare structural feature for naturally occurring iridoid glycosides. The growth inhibitory effects against human cervical carcinoma cells (Hela), human lung adenocarcinoma cells (A549), human acute mononuclear granulocyte leukaemia (THP‐1) and the human liver hepatocellular carcinoma cell line (HepG2) were evaluated by the MTT method.  相似文献   

5.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

6.
The chiral compounds (6aS,9S,10aR)‐11,11‐dimethyl‐5,5‐dioxo‐2,3,8,9‐tetrahydro‐6H‐6a,9‐methanooxazaolo[2,3‐i][2,1]benzisothiazol‐10(7H)‐one, C12H17NO4S, (1), (7aS,10S,11aR)‐12,12‐dimethyl‐6,6‐dioxo‐3,4,9,10‐tetrahydro‐7H‐7a,10‐methano‐2H‐1,3‐oxazino[2,3‐i][2,1]benzisothiazol‐11(8H)‐one, C13H19NO4S, (2), (6aS,9S,10R,10aR)‐11,11‐dimethyl‐5,5‐dioxo‐2,3,7,8,9,10‐hexahydro‐6H‐6a,9‐methanooxazolo[2,3‐i][2,1]benzisothiazol‐10‐ol, C12H19NO4S, (3), and (7aS,10S,11R,11aR)‐12,12‐dimethyl‐6,6‐dioxo‐3,4,8,9,10,11‐hexahydro‐7H‐7a‐methano‐2H‐[1,3]oxazino[2,3‐i][2,1]benzisothiazol‐11‐ol, C13H21NO4S, (4), consist of a camphor core with a five‐membered spirosultaoxazolidine or six‐membered spirosultaoxazine, as both their keto and hydroxy derivatives. In each structure, the molecules are linked via hydrogen bonding to the sulfonyl O atoms, forming chains in the unit‐cell b‐axis direction. The chains interconnect via weak C—H...O interactions. The keto compounds have very similar packing but represent the highest melting [507–508 K for (1)] and lowest melting [457–458 K for (2)] solids.  相似文献   

7.
The photooxygenation of (4R,4aS,7R)-4,4a,5,6,7,8-hexahydro-4,7-dimethyl-3H-2-benzopyran ( 16 ) was performed in (i) MeOH, (ii) acetaldehyde, and (iii) acetone at ?78°. The products obtained respectively were (i) (2R)-2-[(1S,4R)-4-methyl-2-oxocyclohexyl]propyl formate ( 17 ; 72% yield), (ii) 17 (54.5%), (1R,4R,4aS,7R)-3,4,4a,5,6,7-hexahydro-4,7-dimethyl-1H-2-benzopyran-2-yl hydroperoxide ( 19 ; 16.7%), a 12:1 ratio of (3R,4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,7,10-trimethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4-trioxane ( 20 ) and its C(3)-epimer 21 (17%), together with evidence for the 1,2-dioxetane ( 22 ) originating from the addition of dioxygen to the re-re face of the double bond of 16 , and iii) unidentified products and traces of 22 . Addition of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to the acetone solution of 16 after photooxygenation afforded (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4,-trioxane ( 23 , 40%). The photooxygenation of 16 in CH2Cl2 at ?78° followed by addition of acetone and Me3SiOTf afforded 17 (11%), 23 (59%), and (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[8a,1-e]-1,2,4-trioxane ( 24 ; 5%. Repetition of the last experiment, but replacing acetone by cyclopentanone, gave 17 (16%), (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[1,8a-e]-1,2,4-trixane] ( 25 ; 61%), and (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[8a,1-e]-1,2,4-trixane] ( 26 , 4%). The X-ray analysis of 23 was performed, which together with the NMR data, established the structure of the trioxanes 20, 21, 24, 25 , and 26 . Mechanistic and synthesis aspects of these reactions were discussed in relation to the construction of the 1,2,4-trioxane ring in arteannuin and similar molecules.  相似文献   

8.
The structure of naturally‐occurring cinerin C [systematic name: (7S,8R,3′R,4′S,5′R)‐Δ8′‐4′‐hydroxy‐5,5′,3′‐trimethoxy‐3,4‐methylenedioxy‐2′,3′,4′,5′‐tetrahydro‐2′‐oxo‐7.3′,8.5′‐neolignan], isolated from the ethanol extract of leaves of Pleurothyrium cinereum (Lauraceae), has previously been established by NMR and HRMS spectroscopy, and its absolute configuration established by circular dichroism measurements. For the first time, its crystal strucure has now been established by single‐crystal X‐ray analysis, as the monohydrate, C22H26O7·H2O. The bicyclooctane moiety comprises fused cyclopentane and cyclohexenone rings which are almost coplanar. An intermolecular O—H...O hydrogen bond links the 4′‐OH and 5′‐OCH3 groups along the c axis.  相似文献   

9.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

10.
To study the conversion from a meso form to a racemic form of tetrahydrofurantetracarboxylic acid (H4L), seven novel coordination polymers were synthesized by the hydrothermal reaction of Zn(NO3)2 ? 6 H2O with (2S,3S,4R,5R)‐H4L in the presence of 1,10‐phenanthroline (phen), 2,2′‐bipyridine (2,2′‐bpy), or 4,4′‐bipyridine (4,4′‐bpy): [Zn2{(2S,3S,4R,5R)‐L}(phen)2(H2O)] ? 2 H2O ( 1 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L}(phen)2(H2O)2] ( 2 ), [Zn2{(2S,3S,4R,5R)‐L}(H2O)2] ? H2O ( 3 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (2,2′‐bpy)2(H2O)2] ? 2 H2O ( 4 ), [Zn2 {(2S,3S,4R,5R)‐L}(2,2′‐bpy)(H2O)] ( 5 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (4,4′‐bpy)2(H2O)2] ( 6 ), and [Zn2 {(2S,3S,4R,5R)‐L}(4,4′‐bpy)(H2O)] ? 2 H2O ( 7 ). These complexes were obtained by control of the pH values of reaction mixtures, with an initial of pH 2.0 for 1 , 2.5 for 2 , 4 , and 6 , and 4.5 for 3 , 5 , and 7 , respectively. The expected configuration conversion has been successfully realized during the formation of 2 , 4 , and 6 , and the enantiomers of L, (2S,3R,4R,5R)‐L and (2S,3S,4S,5R)‐L, are trapped in them, whereas L ligands in the other four complexes retain the original meso form, which indicates that such a conversion is possibly pH controlled. Acid‐catalyzed enol–keto tautomerism has been introduced to explain the mechanism of this conversion. Complex 1 features a simple 1D metal–L chain that is extended into a 3D supramolecular structure by π–π packing interactions between phen ligands and hydrogen bonds. Complex 2 has 2D racemic layers that consist of centrosymmetric bimetallic units, and a final 3D supramolecular framework is formed by the interlinking of these layers through π–π packing interactions of phen. Complex 3 is a 3D metal–organic framework (MOF) involving meso‐L ligands, which can be regarded as (4,6)‐connected nets with vertex symbol (45.6)(47.68). Complexes 4 and 5 contain 2D racemic layers and (6,3)‐honeycomb layers, respectively, both of which are combined into 3D supramolecular structures through π–π packing interactions of 2,2′‐bpy. The structure of complex 6 is a 2D network formed by 4,4′‐bpy bridging 1D tubes, which consist of metal atoms and enantiomers of L. These layers are connected through hydrogen bonds to give the final 3D porous supramolecular framework of 6 . Complex 7 is a 3D MOF with novel (3,4,5)‐connected (63)(42.64)(42.66.82) topology. The thermal stability of these compounds was also investigated.  相似文献   

11.
The title compounds, (3R,5S,5′R,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐5′‐(2‐methylpropyl)tetradecahydro‐6′H‐spiro[cyclopenta[a]phenanthrene‐3,2′‐[1,4]oxazinane]‐6′,17(2H)‐dione, C26H41NO3, (I), and methyl (2R)‐2‐[(3R,5S,8R,9S,10S,13S,14S)‐10,13‐dimethyl‐2′,17‐dioxohexadecahydro‐3′H‐spiro[cyclopenta[a]phenanthrene‐3,5′‐[1,3]oxazolidin‐3′‐yl]]‐4‐methylpentanoate, C28H43NO5, (II), possess the typical steroid shape (AD rings), but they differ in their extra E ring. The azalactone E ring in (I) shows a half‐chair conformation, while the carbamate E ring of (II) is planar. The orientation of the E‐ring substituent is clearly established and allows a rationalization of the biological results obtained with such androsterone derivatives.  相似文献   

12.
1,4-Diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene ( 2 ), on treatment with a catalytic amount of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) in CH2Cl2 at ?78°, reacts with excess (?)-menthone ( 10 ) to give (1S,2S,4′aS,5R,7′aS)-4′a,7′a-dihydro-2-isopropyl-5-methyl-6′,7′-diphenylspiro[cyclohexane-1,3′-[7′H]cyclopenta-[1,2,4]trioxine] ( 11 ) and its (1R,2S,4′aR,5R,7′aR)-diastereoisomer 12 in a 1:1 ratio and in 21% yield. Repeating the reaction with 1.1 equiv. of Me3SiOTf with respect to 2 affords 11 , 12 , and (1S,2S,3′a.R,5R,6′aS)-3′a,6′a-dihydro-2-isopropyl-5-methyl-3′a-phenoxy-5′-phenylspiro[cyclohexane-l,2′-[4′H]cyclopenta[1,3]dioxole] ( 13 ) together with its(1R,2S,3′aS,5R,6′aR)-diastereoisomer 14 in a ratio of 3:3:3:1 and in 56% yield. (+)-Nopinone( 15 ) in excess reacts with 2 in the presence of 1.1 equiv. of Me3SiOTf to give a pair of 1,2,4-trioxanes ( 16 and 17 ) analogous to 11 and 12 , and a pair of 1,3-dioxolanes ( 18 and 19 ) analogous to 13 and 14 , in a ratio of 8:2:3:3 and in 85% yield. (?)-Carvone and racemic 2-(tert-butyl)cyclohexanone under the same conditions behave like 15 and deliver pairs of diastereoisomeric trioxanes and dioxolanes. In general, catalytic amounts of Me3SiOTf give rise to trioxanes, whereas 1.5 equiv. overwhelmingly engender dioxolanes. Adamantan-2-one combines with 2 giving only (4′aRS,7′aRS)-4′a,7′a-dihydro-6′.7′a-diphenylspiro[adamantane-2,3′-[7′H]cyclopenta[1,2,4]trioxine] in 98% yield regardless of the amount of Me3SiOTf used. The reaction of 1,4-dipheny 1-2,3-dioxabicyclo[2.2.2]oct-5-ene ( 32 ) with 10 and 1.1 equiv. of Me3SiOTf produces only the pair of trioxanes 33 and 34 homologous to 11 and 12 . Treatment of the (S,S)-diastereoisomer 33 with Zn and AcOH furnishes (1S,2S)-1,4-diphenylcyclohex-3-ene-1,2-diol. The crystal structures of 11 – 13 and 16 are obtained by X-ray analysis. The reaction courses of 10 and the other chiral cyclohexanones with prochiral endoperoxides 2 and 32 to give trioxanes are rationalized in terms of the respective enantiomeric silylperoxy cations which are completely differentiated by the si and re faces of the ketone function. The origin of the 1,3-dioxolanes is ascribed to 1,2 rearrangement of the corresponding trioxanes, which occurs with retention of configuration of the angular substituent.  相似文献   

13.
The syntheses of two 2′,3′‐fused bicyclic nucleoside analogues, i.e., 1‐[(4aR,5R,7R,7aS)‐hexahydro‐5‐(hydroxymethyl)‐4,4‐dioxidofuro[3,4‐b][1,4]oxathiin‐7‐yl]pyrimidine‐2,4(1H,3H)‐dione ( 1a ) and 1‐[(4aS,5R,7R,7aS)‐hexahydro‐7‐(hydroxymethyl)‐1,1‐dioxido‐2H‐furo[3,4‐b][1,4]thiazin‐5‐yl]pyrimidine‐ 2,4(1H,3H)‐dione ( 1b ), are described, the key step being an intramolecular hetero‐Michael addition. Their structures and conformations, previously solved by X‐ray crystallography, were analyzed in more detail, using 1D‐ and 2D‐NMR as well as HR‐MS analyses.  相似文献   

14.
The title compounds, (2R,2′′S,3b′S,4a′R,7b′S,8a′R)‐per­hydro­di­spiro­[furan‐2,3′‐di­cyclo­penta­[a,e]­pentalene‐7′,2′′‐furan]‐5,5′′‐dione, C20H26O4, and (3aR,3bR,4aR,4bS,5aS,8aR,8bR,9aR,9bS,10aS)‐per­hydro­dipentaleno­[2,1‐a:2′,1′‐e]­pentalene‐1,6‐dione, C20H26O2, are intermediates identified during the synthesis of dodecahedrane. Crystallographic studies have established the ring‐junction stereochemistry for these important intermediates. All the ring junctions are cis‐fused, and the molecular packing is stabilized by van der Waals interactions.  相似文献   

15.
The hexopyranosid‐2‐ylidenemalononitrile 1 reacted with phenyl isothiocyanate in the presence of triethylamine to furnish (2R,4aR,6S,10bS)‐8‐amino‐4a,6,10,10b‐tetrahydro‐6‐methoxy‐2‐phenyl‐10‐phenylimino‐4H‐thiopyrano[3′,4′:4,5]pyrano[3,2‐d][1,3]dioxine‐7‐carbonitrile (2). Starting from 1, cyclization with sulphur and diethylamine yielded (2R,4aR,6S,9bR)‐8‐amino‐4,4a,6,9b‐tetrahydro‐6‐methoxy‐2‐phenylthieno[2′,3′:4,5]pyrano[3,2‐d][1,3]dioxine‐7‐carbonitrile (3), which could be transformed into the corresponding aminomethylenamino derivative 4 by treatment with triethyl orthoformate and ammonia. Intramolecular cyclization of 4 to yield (2R,4aR,6S,11bR)‐4,4a,6,11b‐tetrahydro‐6‐methoxy‐2‐phenyl[1,3]dioxino[4″,5″:5′,6′]pyrano[3′,4′:4,5]thieno [2,3‐d]pyrimidin‐7‐amine (5) was achieved by using NaH as base. (2R,4aR,6S,9bS)‐8‐Amino‐4a,6,9,9b‐tetrahydro‐6‐methoxy‐9‐(4‐methylphenyl‐sulfonyl)‐2‐phenyl‐4H‐[1,3]dioxino[4′,5′:5,6]pyrano[4,3‐b]pyrrole‐7‐carbonitrile (6) was prepared by treatment of compound 1 with tosylazide and triethylamine.  相似文献   

16.
The crystal and molecular structure of 1‐tert‐butyl 4‐ethyl (2′R,3′R,5′R,2S,3S)‐3‐bromo­methyl‐3‐hydroxy‐2‐[(2′‐hydroxy‐2′,6′,6′‐tri­methyl­bi­cyclo­[3.1.1]­hept‐3′‐yl­idene)­amino]­succinate, C21H34BrNO6, is presented. This compound is an intermediate in the new synthetic route to β‐substituted β‐hydroxy­aspartates, which are blockers of glutamate transport.  相似文献   

17.
The (+)‐(αS,1S,4R)‐diastereomer of the title structure, C10H16O3, aggregates in the solid as non‐symmetric dimers with disorder in both carboxyl groups [O·O = 2.710 (5) and 2.638 (5) Å]. The two mol­ecules constituting the asymmetric unit pair around a pseudo‐twofold rotational axis and differ only slightly in their distances and angles, but one methyl group displays rotational disorder absent in the other mol­ecule. Five inter­molecular C—H·O close contacts exist, involving both ketone groups. The (+)‐(αR,1R,4R)‐diastereomer exists in the crystal in its closed‐ring lactol form, (3R,3aR,6R,7aR)‐2,3,3a,4,5,6,7,7a‐octa­hydro‐7a‐hydroxy‐3,6‐dimethyl­benzo[b]furan‐2‐one, C10H16O3, and aggregates as hydrogen‐bonded catemers that extend from the hydroxyl group of one mol­ecule to the carbonyl group of a neighbor screw‐related along b [O·O = 2.830 (3) Å and O—H·O = 169°]. One close inter­molecular C—H·O contact exists involving the carbonyl group.  相似文献   

18.
The title compound, di­methyl (?)‐(2aR,3R,4R,4aS,5R,7aS,8R,10S,10aR)‐3,8,10‐tri­hydroxy‐4‐[(2R,6R)‐2‐hydroxy‐11‐methyl‐5,7,10‐trioxatetra­cyclo­[6.3.1.02,609,11]­dodec‐3‐en‐9‐yl]‐4‐methyl­per­hydro­isobenzo­furano­[5,4,3a‐cd]­isobenzofuran‐5,10a‐di­acetate, C28H36O13, which exhibits higher antifeedant activity than azadirachtin‐A, a known potent antifeedant, was isolated from neem kernels. The asymmetric unit of the structure contains two independent mol­ecules, which differ in the conformations of their functional groups and also in the conformations of some of the rings. The relative orientation between the decalin and furan­yl moieties is similar to that observed in the majority of azadirachtin structures, but is different from that in azadirachtin‐A. The two symmetry‐independent mol­ecules are linked into dimeric units by intermolecular O—H?O hydrogen bonds.  相似文献   

19.
The absolute configurations of spongia‐13(16),14‐dien‐3‐one [systematic name: (3bR,5aR,9aR,9bR)‐3b,6,6,9a‐tetramethyl‐4,5,5a,6,8,9,9a,9b,10,11‐decahydrophenanthro[1,2‐c]furan‐7(3bH)‐one], C20H28O2, (I), epispongiadiol [systematic name: (3bR,5aR,6S,7R,9aR,9bR)‐7‐hydroxy‐6‐hydroxymethyl‐3b,6,9a‐trimethyl‐3b,5,5a,6,7,9,9a,9b,10,11‐decahydrophenanthro[1,2‐c]furan‐8(4H)‐one], C20H28O4, (II), and spongiadiol [systematic name: (3bR,5aR,6S,7S,9aR,9bR)‐7‐hydroxy‐6‐hydroxymethyl‐3b,6,9a‐trimethyl‐3b,5,5a,6,7,9,9a,9b,10,11‐decahydrophenanthro[1,2‐c]furan‐8(4H)‐one], C20H28O4, (III), were assigned by analysis of anomalous dispersion data collected at 130 K with Cu Kα radiation. Compounds (II) and (III) are epimers. The equatorial 3‐hydroxyl group on the cyclohexanone ring (A) of (II) is syn with respect to the 4‐hydroxymethyl group, leading to a chair conformation. In contrast, isomer (III), where the 3‐hydroxyl group is anti to the 4‐hydroxymethyl group, is conformationally disordered between a major chair conformer where the OH group is axial and a minor boat conformer where it is equatorial. In compound (I), a carbonyl group is present at position 3 and ring A adopts a distorted‐boat conformation.  相似文献   

20.
Three new natural products, a lignoid glycoside 1 and two dimeric phenylpropanoids 2 and 3 , along with two known lignans 4 and 5 , were isolated from the BuOH‐ and CHCl3‐soluble fractions of the whole plant of Daphne oleoides (Thymelaeaceae). The structures of the new compounds were established by spectroscopic techniques, including 2D NMR, as 4‐(β‐D ‐glucopyranosyloxy)‐9′‐hydroxy‐3,3′,4′‐trimethoxy‐7′,9‐epoxylignan ( 1 ), (1R,2S,5R,6R)‐6‐(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐2‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 2 ) and (1R,2S,5R,6S)‐2,6‐bis(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 3 ). The other lignans were identified as (+)‐pinoresinol O‐(β‐D ‐glucopyranoside) ( 4 ) and (+)‐medioresinol ( 5 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号