首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the crystal structures of the diastereoisomers of O‐tosylcinchonidine [(9R)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (I), and O‐tosylcinchonine [(9S)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (II), both C26H28N2O3S, both molecules are in an anti‐closed conformation and, in each case, the position of the aryl ring of the tosylate system is influenced by an intramolecular C—H...O hydrogen bond. The molecular packing in (I) is influenced by weak intermolecular C—H...O and C—H...π interactions. The crystal structure of (II) features C—H...π interactions and van der Waals forces only. The computational investigations using RHF/6–31G** ab initio and AM1 semi‐empirical methods performed for (I) and (II) and their protonated species show that the conformational and energetic parameters of the molecules are correlated with differences in their reactivity in hydrolysis to the corresponding 9‐epibases.  相似文献   

2.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

3.
The title compounds, 3,5,7‐triphenyl‐1,2‐diazacyclohepta‐1(7),2‐diene, C23H20N2, (I), and 3,7‐bis(2‐hydroxyphenyl)‐5‐phenyl‐1,2‐diazacyclohepta‐1(7),2‐diene, C23H20N2O2, (II), constitute the first structurally characterized examples of seven‐membered heterocycles with 1,2‐diaza ring N atoms. Compound (I) crystallizes in the space group P, with two independent molecules in the asymmetric unit that differ in the conformation of one of the phenyl rings, while (II) crystallizes in the space group C2/c. The C5N2 ring in each of (I) and (II) adopts a twist‐boat conformation. Compound (I) exhibits neither C—H...π interactions nor π–π stacking interactions, whereas (II) shows both intramolecular O—H...N hydrogen bonds and a C—H...π interaction that joins the molecules into an infinite chain in the [010] direction.  相似文献   

4.
The structures of two arylsulfonamide para‐alkoxychalcones, namely, N‐{4‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]phenyl}benzenesulfonamide, C22H19NO4S, (I), and N‐{4‐[(E)‐3‐(4‐ethoxyphenyl)prop‐2‐enoyl]phenyl}benzenesulfonamide, C23H21NO4S, (II), reveal the effect of the inclusion of one –CH2– group between the CH3 branch and the alkoxy O atom on the conformation and crystal structure. Although the molecular conformations and one‐dimensional chain motifs are the same in both structures, their crystallographic symmetry, number of independent molecules and crystal packing are different. The crystal packing of (I) is stabilized by weak C—H...π and π–π interactions, while only C—H...π contacts occur in the structure of (II). The role of the additional methylene group in the crystal packing can also be seen in the fact that the alkoxy O atom is an acceptor in nonclassical hydrogen bonds only in the para‐ethoxy analogue, (II). The remarkable similarity between the crystal packing features of (I) and (II) lies in the formation of N—H...O hydrogen‐bonded ribbons, a synthon commonly found in related compounds.  相似文献   

5.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

6.
In the molecule of (2,7‐dimethoxynaphthalen‐1‐yl)(3‐fluorophenyl)methanone, C19H15FO3, (I), the dihedral angle between the plane of the naphthalene ring system and that of the benzene ring is 85.90 (5)°. The molecules exhibit axial chirality, with either an R‐ or an S‐stereogenic axis. In the crystal structure, each enantiomer is stacked into a columnar structure and the columns are arranged alternately to form a stripe structure. A pair of (methoxy)C—H...F hydrogen bonds and π–π interactions between the benzene rings of the aroyl groups link an R‐ and an S‐isomer to form a dimeric pair. These dimeric pairs are piled up in a columnar fashion through (benzene)C—H...O=C and (benzene)C—H...OCH3 hydrogen bonds. The analogous 1‐benzoylated compound, namely (2,7‐dimethoxynaphthalen‐1‐yl)(phenyl)methanone [Kato et al. (2010). Acta Cryst. E 66 , o2659], (II), affords three independent molecules having slightly different dihedral angles between the benzene and naphthalene rings. The three independent molecules form separate columns and the three types of column are connected to each other via two C—H...OCH3 hydrogen bonds and one C—H...O=C hydrogen bond. Two of the three columns are formed by the same enantiomeric isomer, whereas the remaining column consists of the counterpart isomer. In the case of the fluorinated 1‐benzoylated naphthalene analogue, namely (2,7‐dimethoxynaphthalen‐1‐yl)(4‐fluorophenyl)methanone [Watanabe et al. (2011). Acta Cryst. E 67 , o1466], (III), the molecular packing is similar to that of (I), i.e. it consists of stripes of R‐ and S‐enantiomeric columns. A pair of C—H...F hydrogen bonds between R‐ and S‐isomers, and C—H...O=C hydrogen bonds between R(or S)‐isomers, are also observed. Consequently, the stripe structure is apparently induced by the formation of R...S dimeric pairs stacked in a columnar fashion. The pair of C—H...F hydrogen bonds effectively stabilizes the dimeric pair of R‐ and S‐enantiomers. In addition, the co‐existence of C—H...F and C—H...O=C hydrogen bonds makes possible the formation of a structure with just one independent molecule.  相似文献   

7.
In the crystal structure of 6‐phenyl‐3‐thioxo‐2,3,4,5‐tetrahydro‐1,2,4‐triazin‐5‐one, C9H7N3OS, (I), the 1,2,4‐triazine moieties are connected by face‐to‐face contacts through two kinds of double hydrogen bonds (N—H...O and N—H...S), which form planar ribbons along the a axis. The ribbons are crosslinked through C—H...π interactions between the phenyl rings. The molecular structures of two regioisomeric compounds, namely 6‐phenyl‐2,3‐dihydro‐7H‐1,3‐thiazolo[3,2‐b][1,2,4]triazin‐7‐one, C11H9N3OS, (II), and 3‐phenyl‐6,7‐dihydro‐4H‐1,3‐thiazolo[2,3‐c][1,2,4]triazin‐4‐one, C11H9N3OS, (III), which were prepared by the condensation reaction of (I) with 1,2‐dibromoethane, have been characterized by X‐ray crystallography and spectroscopic studies. The crystal structures of (II) and (III) both show two crystallographically independent molecules. While the two compounds are isomers, the unit‐cell parameters and crystal packing are quite different and (II) has a chiral crystal structure.  相似文献   

8.
The crystal and molecular structures of two ReI tricarbonyl complexes, namely fac‐tricarbonylchlorido[1‐(4‐fluorocinnamoyl)‐3‐(pyridin‐2‐yl‐κN)pyrazole‐κN2]rhenium(I), [ReCl(C17H12FN3O)(CO)3], (I), and fac‐tricarbonylchlorido[1‐(4‐nitrocinnamoyl)‐3‐(pyridin‐2‐yl‐κN)pyrazole‐κN2]rhenium(I) acetone monosolvate, [ReCl(C17H12ClN4O3)(CO)3]·C3H6O, (II), are reported. The complexes form centrosymmetric dimers that are linked into one‐dimensional columns by C—H…Cl and N—O…H interactions in (I) and (II), respectively. C—H…Cl interactions in (II) generate two R21(7) loops that merge into a single R21(10) loop. These interactions involve the alkene, pyrazole and benzene rings, hence restricting the ligand rotation and giving rise to a planar conformation. Unlike (II), complex (I) exhibits a twisted conformation of the ligand and a pair of molecules forms a centrosymmetric dimer with an R22(10) loop via C—H…O interactions. The unique supramolecular structures of (I) and (II) are determined by their planarity and weak interactions. The planar conformation of (II) provides a base for appreciable π–π stacking interactions compared to (I). In addition, an N—O…π interaction stabilizes the supramolecular structure of (II). We report herein the first n→π* interactions of ReI tricarbonyl complexes, which account for 0.33 kJ mol−1. Intermolecular C—H…Cl and C—H…O interactions are present in both complexes, with (II) showing a greater preference for these interactions compared to (I), with cumulative contributions of 48.7 and 41.5%, respectively. The influence of inductive (fluoro) and/or resonance (nitro) effects on the π‐stacking ability was further supported by LOLIPOP (localized orbital locator‐integrated π over plane) analysis. The benzene ring of (II) demonstrated a higher π‐stacking ability compared to that of (I), which is supported by the intrinsic planar geometry. The HOMA (harmonic oscillator model of aromaticity) index of (I) revealed more aromaticity with respect to (II), suggesting that NO2 greatly perturbed the aromaticity. The Hirshfeld fingerprint (FP) plots revealed the preference of (II) over (I) for π–π contacts, with contributions of 6.8 and 4.4%, respectively.  相似文献   

9.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

10.
In the structures of the two enantiopure diastereoisomers of the title compound, C20H18ClN3O, which crystallize in different space groups, the molecules are very similar as far as bond distances and angles are concerned, but more substantial differences are observed in some torsion angles. The crystal structures of both molecules can be described as zigzag layers along the c axis. The packing is stabilized by hydrogen‐bond interactions of N—H...O, C—H...Cl and C—H...π types for 2‐[(R)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, and of N—H...N, C—H...O and C—H...π types for 2‐[(S)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, resulting in the formation of two‐ and three‐dimensional networks.  相似文献   

11.
The title compound, C23H15Cl2NO3, crystallizes with two independent mol­ecules in the asymmetric unit. The chroman­one moiety consists of a benzene ring fused with a six‐membered heterocyclic ring which adopts a sofa conformation. The five‐membered spiro­isoxazoline ring is in an envelope conformation. The p‐chloro­phenyl rings bridged by the five‐membered ring are nearly perpendicular to each other. The chromanone moiety of one mol­ecule packs into the cavity formed by the p‐chloro­phenyl rings of a second mol­ecule through the formation of C—H?π interactions. The structure is stabilized by weak C—H?O, C—H?Cl and C—H?π interactions.  相似文献   

12.
The crystal structure of 4,6‐bis(methylsulfanyl)‐1‐phthalimidopropyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H17N5O2S2, (VI), reveals an unusual folded conformation due to an apparent intramolecular C—H⃛π interaction between the 6‐methyl­­sul­fanyl and phenyl groups. However, the closely related compound 6‐methyl­sulfanyl‐1‐phthalimido­propyl‐4‐(pyrroli­din‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C21H22N6O2S, (VII), exhibits a fully extended structure, devoid of any intramol­ecular C—H⃛π or π–π interactions. The crystal packing of both mol­ecules involves intermolecular stacking interactions due to aromatic π–π interactions. In addition, (VI) exhibits intermolecular C—H⃛O hydrogen bonding and (VII) exhibits dimerization of the mol­ecules through intermolecular C—H⃛N hydrogen bonding.  相似文献   

13.
The molecules of (±)‐2‐(4‐methoxyphenyl)‐1‐phenethyl‐2,3‐dihydroquinazolin‐4(1H)‐one, C23H22N2O2, (I), and (±)‐2‐(1,3‐benzodioxol‐5‐yl)‐1‐phenethyl‐2,3‐dihydroquinazolin‐4(1H)‐one, C23H20N2O3, (II), have T‐shaped forms in the crystal structure. The tetrahydropyrimidine ring in both structures adopts a sofa conformation. Both molecules are linked by N—H...O and C—H...O hydrogen bonds to form sheets built from alternating R22(8) and R44(26) [R44(24) in (II)] edge‐fused rings. Additionally, the structures are stabilized by extensive C—H...π interactions.  相似文献   

14.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde with phenols under basic conditions yields the corresponding 5‐aryloxy derivatives; the subsequent reaction of these carbaldehydes with substituted acetophenones yields the corresponding chalcones, which in turn undergo cyclocondensation reactions with hydrazine in the presence of acetic acid to form N‐acetylated reduced bipyrazoles. Structures are reported for three 5‐aryloxycarbaldehydes and the 5‐piperidino analogue, and for two reduced bipyrazole products. 5‐(2‐Chlorophenoxy)‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13ClN2O2, (II), which crystallizes with Z′ = 2 in the space group P, exhibits orientational disorder of the carbaldehyde group in each of the two independent molecules. Each of 3‐methyl‐5‐(4‐nitrophenoxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13N3O4, (IV), 3‐methyl‐5‐(naphthalen‐2‐yloxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C21H16N2O2, (V), and 3‐methyl‐1‐phenyl‐5‐(piperidin‐1‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H19N3O, (VI), (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐5′‐(2‐chlorophenoxy)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C27H22ClN7O2, (IX) and (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐3′‐methyl‐5′‐(naphthalen‐2‐yloxy)‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C31H25N7O2, (X), has Z′ = 1, and each is fully ordered. The new compounds have all been fully characterized by analysis, namely IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. In each of (II), (V) and (IX), the molecules are linked into ribbons, generated respectively by combinations of C—H…N, C—H…π and C—Cl…π interactions in (II), C—H…O and C—H…π hydrogen bonds in (V), and C—H…N and C—H…O hydrogen bonds in (IX). The molecules of compounds (IV) and (IX) are both linked into sheets, by multiple C—H…O and C—H…π hydrogen bonds in (IV), and by two C—H…π hydrogen bonds in (IX). A single C—H…N hydrogen bond links the molecules of (X) into centrosymmetric dimers. Comparisons are made with the structures of some related compounds.  相似文献   

15.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

16.
Ethyl 1‐ethyl‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C14H14INO3, (I), and ethyl 1‐cyclopropyl‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C15H14INO3, (II), have isomorphous crystal structures, while ethyl 1‐dimethylamino‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C14H15IN2O3, (III), possesses a different solid‐state supramolecular architecture. In all three structures, O...I halogen‐bonding interactions connect the quinolone molecules into infinite chains parallel to the unique crystallographic b axis. In (I) and (II), these molecular chains are arranged in (101) layers, viaπ–π stacking and C—H...π interactions, and these layers are then interlinked by C—H...O interactions. The structural fragments involved in the C—H...O interactions differ between (I) and (II), accounting for the observed difference in planarity of the quinolone moieties in the two isomorphous structures. In (III), C—H...O and C—H...π interactions form (100) molecular layers, which are crosslinked by O...I and C—H...I interactions.  相似文献   

17.
The crystallographically observed molecular structure of the title compound, C19H17NO, and its inverted counterpart are compared with that calculated by density functional theory (DFT) at the B3LYP/6‐311++G(d,p) level. The results from both methods suggest that the observed molecular conformation of the title compound is primarily determined by intermolecular interactions in the crystal structure. The periodic organization of the molecules is stabilized by weak C—H...O and C—H...π hydrogen bonds and thus a two‐dimensional puckered network consisting of R44(22) and R44(38) ring motifs is established. The title molecule has a (+)‐antiperiplanar conformation about the C—C bond in the aminoacetone bridge. The pyramidal geometry observed around the vertex N atom is flattened by the presence of bulky phenyl and naphthylethanone fragments.  相似文献   

18.
The crystal structures of diphenyl (cycloheptylamido)phosphate, C19H24NO3P or (C6H5O)2P(O)(NHC7H13), ( I ), and diphenyl (dibenzylamido)phosphate, C26H24NO3P or (C6H5O)2P(O)[N(CH2C6H5)2], ( II ), are reported. The NHC7H13 group in ( I ) provides two significant hydrogen‐donor sites in N—H…O and C—H…O hydrogen bonds, needed for a one‐dimensional hydrogen‐bond pattern along [100] in the crystal, while ( II ), with a (C6H5CH2)2N moiety, lacks these hydrogen bonds, but its three‐dimensional supramolecular structure is mediated by C—H…π interactions. The conformational behaviour of the phenyl rings in ( I ), ( II ) and analogous structures from the Cambridge Structural Database (CSD) were studied in terms of flexibility, volume of the other group attached to phosphorus and packing forces. From this study, synclinal (±sc), anticlinal (±ac) and antiperiplanar (±ap) conformations were found to occur. In the structure of ( II ), there is an intramolecular Cortho—H…O interaction that imposes a +sc conformation for the phenyl ring involved. For the structures from the CSD, the +sc and ±ap conformations appear to be mainly imposed by similar Cortho—H…O intramolecular interactions. The large contribution of the C…H/H…C contacts (32.3%) in the two‐dimensional fingerprint plots of ( II ) is a result of the C—H…π interactions. The differential scanning calorimetry (DSC) analyses exhibit peak temperatures (Tm) at 109 and 81 °C for ( I ) and ( II ), respectively, which agree with the strengths of the intermolecular contacts and the melting points.  相似文献   

19.
The lithiation of Ntert‐butoxycarbonyl (N‐Boc)‐1,2,3,4‐tetrahydroisoquinoline was optimized by in situ IR (ReactIR) spectroscopy. Optimum conditions were found by using n‐butyllithium in THF at ?50 °C for less than 5 min. The intermediate organolithium was quenched with electrophiles to give 1‐substituted 1,2,3,4‐tetrahydroisoquinolines. Monitoring the lithiation by IR or NMR spectroscopy showed that one rotamer reacts quickly and the barrier to rotation of the Boc group was determined by variable‐temperature NMR spectroscopy and found to be about 60.8 kJ mol?1, equating to a half‐life for rotation of approximately 30 s at ?50 °C. The use of (?)‐sparteine as a ligand led to low levels of enantioselectivity after electrophilic quenching and the “poor man’s Hoffmann test” indicated that the organolithium was configurationally unstable. The chemistry was applied to N‐Boc‐6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinoline and led to the efficient synthesis of the racemic alkaloids salsolidine, carnegine, norlaudanosine and laudanosine.  相似文献   

20.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号