首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
The structure of the title compound, {(C5H5ClN)2[Hg3Cl8]}n, consists of 4‐chloropyridinium cations and one‐dimensional [Hg3Cl8]2− anion chains. There are two coordination environments for HgII in the inorganic chain. The first is a distorted tetrahedral geometry made up of an HgCl2 unit with two Cl anion bridges, while the second is an octahedral coordination geometry consisting of an HgCl2 unit and four chloride‐anion bridges. This gives rise to a novel three‐layer centrosymmetric polymer. Finally, the three‐dimensional network comes about through the many C—H...Cl and N—H...Cl hydrogen bonds that link the organic and inorganic layers.  相似文献   

2.
The title compound, {(C7H15N2Cl)2[Cd3Cl10]·4H2O}n, consists of 1‐chloromethyl‐1,4‐diazoniabicyclo[2.2.2]octane dications, one‐dimensional inorganic chains of {[Cd3Cl10]4−} anions and uncoordinated water molecules. Each of the two independent CdII ions, one with site symmetry 2/m and the other with site symmetry m, is octahedrally coordinated by chloride ions (two with site symmetry m and one with site symmetry 2), giving rise to novel polymeric zigzag chains of corner‐sharing Cd‐centred octahedra parallel to the c axis. The organic cations, bisected by mirror planes that contain the two N atoms, three methylene C atoms and the Cl atom, are ordered. Hydrogen bonds (O—H...Cl and O—H...O) between the water molecules (both with O atoms in a mirror plane) and the chloride anions of neighbouring chloridocadmate chains form a three‐dimensional supramolecular network.  相似文献   

3.
The structure of the title compound, catena‐poly[[cadmium(II)‐di‐μ‐chlorido‐μ‐(1,4‐diazoniabicyclo[2.2.2]octane‐1‐carboxylato)] [[aquachloridocadmium(II)]‐di‐μ‐chlorido] dihydrate], {[Cd(C8H15N2O2)Cl2][CdCl3(H2O)]·2H2O}n, contains two kinds of independent one‐dimensional chain, viz. {[Cd(C8H15N2O2)Cl2]+}n and {[CdCl3(H2O)]}n, and uncoordinated water molecules. Each CdII cation in the {[Cd(C8H15N2O2)Cl2]+}n chain is octahedrally coordinated by two pairs of bridging chloride ligands and two O atoms from different bridging carboxylate groups. CdII cations in the {[CdCl3(H2O)]}n chain are also octahedrally surrounded by four bridging chloride ligands, one terminal chloride ligand and one coordinated water molecule. Hydrogen bonds between solvent water molecules and these two independent chains generate a three‐dimensional framework containing two‐dimensional zigzag layers.<!?tpb=18pt>  相似文献   

4.
In poly[di‐μ‐chlorido‐μ‐(4,4′‐bipyridazine)‐κ2N1:N1′‐cadmium(II)], [CdCl2(C8H6N4)]n, (I), and its isomorphous bromide analogue, [CdBr2(C8H6N4)]n, (II), the halide atom lies on a mirror plane and the CdII ion resides at the intersection of two perpendicular mirror planes with m2m site symmetry. The pyridazine rings of the ligand lie in a mirror plane and are related to each other by a second mirror plane perpendicular to the first. The compounds adopt the characteristic structure of the [MIIX2(bipy)] type (bipy is bipyridine) based on crosslinking of [Cd(μ‐X)2]n chains [Cd—Cl = 2.5955 (9) and 2.6688 (9) Å; Cd—Br = 2.7089 (4) and 2.8041 (3) Å] by bitopic rod‐like organic ligands [Cd—N = 2.368 (3)–2.380 (3) Å]. This feature is discussed in terms of supramolecular stabilization, implying that the periodicity of the inorganic chain [Cd...Cd = 3.7802 (4) Å in (I) and 3.9432 (3) Å in (II)] is favourable for extensive parallel π–π stacking of monodentate pyridazine rings, with centroid–centroid distances of 3.7751 (4) Å in (I) and 3.9359 (4) Å in (II). This is not the case for the longer iodide bridges, which cannot stabilize such a pattern. In poly[tetra‐μ‐iodido‐μ4‐(4,4′‐bipyridazine)‐κ4N1:N2:N1′:N2′‐dicadmium(II)], [Cd2I4(C8H6N4)]n, (III), the ligands are situated across a centre of inversion; they are tetradentate [Cd—N = 2.488 (2) and 2.516 (2) Å] and link successive [Cd(μ‐I)2]n chains [Cd—I = 2.8816 (3)–3.0069 (4) Å] into corrugated layers.  相似文献   

5.
In catena‐poly[copper(II)‐di‐μ‐chlorido‐μ‐proline‐κ2O:O′], [CuCl2(C5H9NO2)]n, two symmetry‐independent metal cations adopt distorted octahedral coordination, typical for d9 Jahn–Teller systems. Each chloride bridge is involved in both a short and a very long interaction with a CuII centre. The centrosymmetric crystal structure contains homochiral chains of opposite handedness which extend along the shortest lattice parameter (i.e. a). The O:O′‐bridging coordination mode of proline, although a common motif for such complexes in general, is remarkable for CuII; the vast majority of amino acid derivatives of this cation are characterized by N,O‐chelation.  相似文献   

6.
The title compound, {(C9H14N)4[Pb3I10]}n, crystallizes as an organic–inorganic hybrid. As such, the structure consists of a two‐dimensional inorganic layer of [Pb3I10]n4n ions extending along [100]. The asymmetric unit contains two independent Pb atoms, viz. one in a general position and the other on an inversion centre. Each Pb atom is octa­hedrally coordinated by six iodide ions and exhibits both face‐ and corner‐sharing with adjacent atoms in the inorganic layer. These anionic layers alternate with 3‐phenyl­propyl­ammonium cations, which hydrogen bond to the iodides. Simple face‐to‐edge σ–π stacking inter­actions are observed between the aromatic rings that stabilize the overall three‐dimensional structure. This net structure has only been observed five times previously.  相似文献   

7.
The title compound, μ‐aqua‐1:2κ2O‐penta­aqua‐1κ2O,2κ3O‐μ‐3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine‐1κ2N1,N6:2κ2N2,N3‐chloro‐1κCl‐dinickel(II) trichloride trihydrate, [Ni2Cl(C16H14­N4)(H2O)6]Cl3·3H2O, consists of two NiII atoms, a 3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine mol­ecule, four Cl atoms and nine water mol­ecules. The two Ni atoms are octahedrally coordinated by N and Cl atoms, and by water mol­ecules, and the three six‐membered rings, a pyridazine and two picolines, are planar to within 0.181 (3) Å. The crystal structure is stabilized by an intra‐ and intermolecular hydrogen‐bonding scheme involving water–water and water–chlorine interactions.  相似文献   

8.
The structures of seven A2Cu4X10 compounds containing quasi‐planar oligomers are reported: bis(1,2,4‐trimethylpyridinium) hexa‐μ‐chlorido‐tetrachloridotetracuprate(II), (C8H12N)2[Cu4Cl10], (I), and the hexa‐μ‐bromido‐tetrabromidotetracuprate(II) salts of 1,2,4‐trimethylpyridinium, (C8H12N)2[Cu4Br10], (II), 3,4‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (III), 2,3‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (IV), 1‐methylpyridinium, (C6H8N)2[Cu4Br10], (V), trimethylphenylammonium, (C9H14N)2[Cu4Br10], (VI), and 2,4‐dimethylpyridinium, (C7H10N)2[Cu4Br10], (VII). The first four are isomorphous and contain stacks of tetracopper oligomers aggregated through semicoordinate Cu...X bond formation in a 4(,) stacking pattern. The 1‐methylpyridinium salt also contains oligomers stacked in a 4(,) pattern, but is isomorphous with the known chloride analog instead. The trimethylphenylammonium salt contains stacks of oligomers arranged in a 4(,) stacking pattern similar to the tetramethylphosphonium analog. These six structures feature inversion‐related organic cation pairs and hybrid oligomer/organic cation layers derived from the parent CuX2 structure. The 2,4‐dimethylpyridinium salt is isomorphous with the known (2‐amino‐4‐methylpyridinium)2Cu4Cl10 structure, in which isolated stacks of organic cations and of oligomers in a 4(,) pattern are found. In bis(3‐chloro‐1‐methylpyridinium) octa‐μ‐bromido‐tetrabromidopentacuprate(II), (C6H7ClN)[Cu5Br12], (VIII), containing the first reported fully halogenated quasi‐planar pentacopper oligomer, the oligomers stack in a 5(,) stacking pattern as the highest nuclearity [CunX2n+2]2− oligomer compound known with isolated stacking. Bis(2‐chloro‐1‐methylpyridinium) dodeca‐μ‐bromido‐tetrabromidoheptacuprate(II), (C6H7ClN)2[Cu7Br16], (IX), contains the second heptacopper oligomer reported and consists of layers of interleaved oligomer stacks with a 7[(,)][(−,−)] pattern isomorphous with that of the known 1,2‐dimethylpyridinium analog. All the oligomers reported here are inversion symmetric.  相似文献   

9.
High‐spin cobalt(II) complexes are considered useful building blocks for the synthesis of single‐molecule magnets (SMM) because of their intrinsic magnetic anisotropy. In this work, three new cobalt(II) chloride adducts with labile ligands have been synthesized from anhydrous CoCl2, to be subsequently employed as starting materials for heterobimetallic compounds. The products were characterized by elemental, spectroscopic (EPR and FT–IR) and single‐crystal X‐ray diffraction analyses. trans‐Tetrakis(acetonitrile‐κN )bis(tetrahydrofuran‐κO )cobalt(II) bis[(acetonitrile‐κN )trichloridocobaltate(II)], [Co(C2H3N)4(C4H8O)2][CoCl3(C2H3N)]2, (1), comprises mononuclear ions and contains both acetonitrile and tetrahydrofuran (thf) ligands, The coordination polymer catena‐poly[[tetrakis(propan‐2‐ol‐κO )cobalt(II)]‐μ‐chlorido‐[dichloridocobalt(II)]‐μ‐chlorido], [Co2Cl4(C3H8O)4], (2′), was prepared by direct reaction between anhydrous CoCl2 and propan‐2‐ol in an attempt to rationalize the formation of the CoCl2–alcohol adduct (2), probably CoCl2(HOiPr)m . The binuclear complex di‐μ‐chlorido‐1:2κ4Cl :Cl‐dichlorido‐2κ2Cl‐tetrakis(tetrahydrofuran‐1κO )dicobalt(II), [Co2Cl4(C4H8O)4], (3), was obtained from (2) after recrystallization from tetrahydrofuran. All three products present cobalt(II) centres in both octahedral and tetrahedral environments, the former usually less distorted than the latter, regardless of the nature of the neutral ligand. Product (2′) is stabilized by an intramolecular hydrogen‐bond network that appears to favour a trans arrangement of the chloride ligands in the octahedral moiety; this differs from the cis disposition found in (3). The expected easy displacement of the bound solvent molecules from the metal coordination sphere makes the three compounds good candidates for suitable starting materials in a number of synthetic applications.  相似文献   

10.
In catena‐poly[[[diaqua­nickel(II)]‐di‐μ‐glycine] dibromide], {[Ni(C2H5NO2)2(H2O)2]Br2}n, (I), the Ni atom is located on an inversion centre. In catena‐poly[[[tetra­aqua­magnesium(II)]‐μ‐glycine] dichloride], {[Mg(C2H5NO2)(H2O)4]Cl2}n, (II), the Mg atom and the non‐H atoms of the glycine mol­ecule are located on a mirror plane. All other atoms are located on general positions. The atomic arrangements of both compounds are characterized by [MO6] octa­hedra (M = Ni or Mg) connected by glycine mol­ecules, with the halogenide ions in the inter­stices. In (I), four of the coordinating O atoms are from glycine and two are from water mol­ecules, building layers of octa­hedra and organic mol­ecules. In (II), two of the coordinating O atoms are from glycine and four are from water mol­ecules. The octa­hedra and organic mol­ecules form chains.  相似文献   

11.
In the title compound, [Sn(C3H4F3)2Cl2(C5H5N)2], the Sn atom lies on an inversion centre and is octahedrally coordinated by two Cl atoms, two tri­fluoro­propyl groups and two N atoms in an all‐trans configuration. The electronegative tri­fluoro­propyl groups increase the electrophilic properties of the Sn atom, and the Sn—Cl and Sn—N bonds are shortened in comparison with those reported for analogous compounds.  相似文献   

12.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

13.
The title compound, {(C6H14N2O2)[Cu2Cl6(H2O)]}n, consists of 1,4‐dihydroxy‐1,4‐diazoniabicyclo[2.2.2]octane dications and one‐dimensional inorganic anionic {[Cu2Cl6(H2O)]2−}n chains in which both five‐coordinate [CuCl3(H2O)] and five‐coordinate [CuCl3] units exist. These two distinct type of unit are linked together by one chloride ion and are bridged across centres of inversion to further units of their own type through two chloride ions, giving rise to novel polymeric zigzag chains parallel to the c axis. The chains are connected by O—H...Cl hydrogen bonds to produce R24(16) ring motifs, resulting in two‐dimensional layers parallel to the ac plane. These layers are linked into a three‐dimensional framework with the organic cations via O—H...Cl hydrogen bonds. Hydrogen bonding between the chains, and between the chains and the organic cations, provides stability to the crystal structure.  相似文献   

14.
In the title compound, catena‐poly[diselanylbis(1,3‐dimethyl‐1H‐imidazol‐3‐ium) [μ3‐chlorido‐tetra‐μ2‐chlorido‐tricuprate(I)]], {(C10H16N4Se2)[Cu3Cl5]}n, the diselenide dication is stabilized by catena‐[Cu3Cl5]2− anions which associate through strong Cu—Cl bonds [average length = 2.3525 (13) Å] to form polymeric chains. The polymeric [Cu3Cl5]2− anion contains crystallographically imposed twofold rotation symmetry, with distorted trigonal‐planar and tetrahedral geometries around the two symmetry‐independent Cu atoms. Likewise, the Se—Se bond of the cation is centered on a twofold rotation axis.  相似文献   

15.
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three‐dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2‐azaniumylethyl)trimethylphosphanium [tetra‐μ‐bromido‐plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two‐dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ~2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.  相似文献   

16.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

17.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

18.
In the title compound {alternative name: poly­[silver(I)‐μ‐(3‐­amino‐2‐chloro­pyridine)‐μ‐nitr­ato]}, [Ag(NO3)(C5H5ClN2)]n the AgI atom is in an irregular AgN2O3 geometry, surrounded by one pyridyl N atom [Ag—N 2.283 (5) Å], one amine N atom [Ag—N 2.364 (6) Å] and three O atoms from different nitrate ions [Ag—O 2.510 (6)–2.707 (6) Å]. The Ag ions are bridged by the 3‐amino‐2‐chloro­pyridine ligands into helical chains. Adjacent uniform chiral chains are further interlinked through the NO3 bridges into an interesting two‐dimensional coordination network in the solid.  相似文献   

19.
In the ternary title compound, catena‐poly­[[silver(I)‐μ‐ethylenedi­amine‐κ2N:N′] 3‐nitro­benzoate monohydrate], {[Ag(C2H8N2)](C7H4NO4)·H2O}n, the Ag atom is bicoordinated in a linear configuration by two different N atoms from two symmetry‐related ethyl­enedi­amine ligands, thus giving linear polymeric chains with an [–Ag—N—C—C—N–]n backbone running parallel to the a axis. In the crystal packing, these linear chains are interconnected by N—H⃛O and O—H⃛O hydrogen bonds to form layers parallel to the ab plane.  相似文献   

20.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号