首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis(hinokitiolato)copper(II), Cu(hino)2, exhibits both antibacterial and antiviral properties, and has been previously shown to exist in two modifications. A third modification has now been confirmed, namely tetrakis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)tricopper(II)–bis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis[(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)copper(II)] (1/1), [Cu(C10H11O2)2]3·[Cu(C10H11O2)2]2, where 3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olate is the systematic name for the hinokitiolate anion. This new modification is composed of discrete [cis‐Cu(hino)2]2[trans‐Cu(hino)2] trimers and [cis‐Cu(hino)2]2 dimers. The Cu atoms are bridged by μ2‐O atoms from the hinokitiolate ligands to give distorted square‐pyramidal and distorted octahedral CuII coordination environments. Hence, the CuII environments are CuO5/CuO6/CuO5 for the trimer and CuO5/CuO5 for the dimer. Each trimer and dimer has crystallographically imposed inversion symmetry. The trimer has never been observed before, the dimer has been seen only once before, and the combination of the two together in the same lattice is unprecedented. The CuO5 cores exhibit four strong basal Cu—O bonds [1.915 (2)–1.931 (2) Å] and one weak apical Cu—O bond [2.652 (2)–2.658 (2) Å]. The CuO6 core exhibits four strong equatorial Cu—O bonds [1.922 (2)–1.929 (2) Å] and two very weak axial Cu—O bonds [2.911 (3) Å]. The bite angles for the chelating hinokitiolate ligands range from 83.13 (11) to 83.90 (10)°.  相似文献   

2.
Bis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis[(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)copper(II)]–urea–acetone (1/6/2), [Cu2(C10H11O2)4]·6CH4N2O·2C3H6O, where 3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olate is the systematic name for the hinokitiolate anion, contains three novel structural features. First, it contains a bis(hinokitiolato)copper(II) dimer, [Cu(hino)2]2, unlike any other, demonstrating that linkage isomerism is another avenue by which Cu(hino)2 can transmute from one form to another. Second, [Cu(hino)2]2 is hydrogen bonded to two urea molecules, indicating that hydrogen bonding cannot yet be discounted from any proposed mechanism of action for the antimicrobial and antiviral properties of bis(hinokitiolato)copper(II). Finally, corrugated urea layers crosslinked by [Cu(hino)2]2 dimers are observed, suggesting that a new family of host–guest materials, i.e. metallo–urea clathrates, exists to challenge our understanding of crystal engineering and crystal growth and design. Selected details of the structure are that the [Cu(hino)2]2 dimers possess crystallographic inversion symmetry, the Cu atoms have square‐pyramidal coordination geometries, the basal Cu—O bonds are in the range 1.916 (2)–1.931 (2) Å, the apical Cu—O bond length is 2.582 (2) Å, the hinokitiolate bite angles are in the range 83.41 (7)–83.96 (8)°, the urea–Cu(hino)2 interactions have an R22(8) motif, and the urea layers result from the close packing of R86(28) `butterflies' and R86(24) `strips of tape'.  相似文献   

3.
The complex trans‐bis(hinokitiolato)copper(II) [systematic name: trans‐bis(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trienolato)copper(II); abbreviated name: trans‐Cu(hino)2], [Cu(C10H11O2)2], is a biologically active compound. Three polymorphs of this square‐planar monomer, all with (+sp,−sp) isopropyl substituents, have been reported previously. A fourth polymorph containing (+ac,−ac) isopropyl groups and its chloroform disolvate, [Cu(C10H11O2)2]·2CHCl3, both exhibiting nonmerohedral twinning and with all Cu atoms on centers of crystallographic inversion symmetry, are reported here. One of the differences between all of these polymorphs is the relative conformation of the isopropyl groups with respect to the plane of the molecule. Stacking and Cu...olefin π distances ranging from 3.214 (4) to 3.311 (2) Å are observed, and the chloroform solvent molecules participate in bifurcated C—H...O hydrogen bonds [H...O = 2.26–2.40 Å, C...O = 3.123 (5)–3.214 (5) Å, C—H...O = 127–151° and O...H...O = 74°].  相似文献   

4.
The title complex [systematic name: trans‐bis(3‐iso­propyl‐7‐oxo­cyclo­hepta‐1,3,5‐trienolato)copper(II)], [Cu(C10H11O2)2],is a substance possessing antimicrobial activity. The compound crystallizes in a number of polymorphic forms, the structures for two of which are reported here. Stacks of square‐planar mol­ecules exhibiting weak intermolecular copper–olefin π interactions (not observed in earlier reports on this substance) are described. The mol­ecules have crystallographically imposed inversion symmetry, with stacking and copper–olefin π distances ranging from 3.226 (2) to 3.336 (1) Å.  相似文献   

5.
The title compound, trans‐[Pd(C6H5)(C8H7O2S)(C18H15P)2], crystallizes in two modifications differing only in the orientation of the 2‐methyl­thio­benzoato ligand. In both cases, this ligand binds to the metal centre via one O atom in a monodentate fashion. The only significant difference is a rotation about the C(Ph)—COO bond, with O—C—C—C torsion angles having values of 6.3 (7) and 157.3 (3)° in the two isomeric forms.  相似文献   

6.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

7.
In the crystal structure of the title compound [systematic name: diaqua­bis(6‐methyl‐2,2‐dioxo‐1,2,3‐oxathia­zin‐4‐olato‐κO4)bis­(3‐methyl­pyridine‐κN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the NiII centre resides on a centre of symmetry and has a distorted octa­hedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans‐oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octa­hedron are occupied by two N atoms of two trans pyridine ligands. Mol­ecules are stacked in columns running along the a axis. There are π–π stacking inter­actions between the mol­ecules in each column, with a distance of 3.623 (2) Å between the centroids of the pyridine rings. There are also O—H⋯O inter­actions between the columns.  相似文献   

8.
The title compounds, trans‐bis(trans‐cyclohexane‐1,2‐diamine)bis(6‐methyl‐2,2,4‐trioxo‐3,4‐dihydro‐1,2,3‐oxathiazin‐3‐ido)copper(II), [Cu(C4H4NO4S)2(C6H14N2)2], (I), and trans‐diaquabis(cyclohexane‐1,2‐diamine)zinc(II) 6‐methyl‐2,2,4‐trioxo‐3,4‐dihydro‐1,2,3‐oxathiazin‐3‐ide dihydrate, [Zn(C6H14N2)2(H2O)2](C4H4NO4S)2·2H2O, (II), are two‐dimensional hydrogen‐bonded supramolecular complexes. In (I), the CuII ion resides on a centre of symmetry in a neutral complex, in a tetragonally distorted octahedral coordination environment comprising four amine N atoms from cyclohexane‐1,2‐diamine ligands and two N atoms of two acesulfamate ligands. Intermolecular N—H...O and C—H...O hydrogen bonds produce R22(12) motif rings which lead to two‐dimensional polymeric networks. In contrast, the ZnII ion in (II) resides on a centre of symmetry in a complex dication with a less distorted octahedral coordination environment comprising four amine N atoms from cyclohexane‐1,2‐diamine ligands and two O atoms from aqua ligands. In (II), an extensive two‐dimensional network of N—H...O, O—H...O and C—H...O hydrogen bonds includes R21(6) and R44(16) motif rings.  相似文献   

9.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

10.
trans‐Di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans‐di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.  相似文献   

11.
The structures of cis‐ and trans‐2‐(4‐tert‐butyl­cyclo­hexyl­oxy)‐1,3,5‐tri­nitro­benzene, C16H21N3O7, (I) and (II), respectively, were determined at low temperature in order to obtain accurate structural parameters for comparison purposes. The Calkyl—Oether bond distances are 1.497 (2) and 1.491 (2) Å for (I) and (II), respectively.  相似文献   

12.
In the title compounds, trans‐[PtI2(C11H14N2OS)2], (I), and trans‐[PtBr2(C11H14N2OS)2], (II), respectively, intramolecular N—H⋯O (propyl­amine side) hydrogen bonds in the potentially bidentate thio­urea ligands lock the carbonyl O atoms into six‐membered rings, determining the S‐mono­dentate mode of coordination of these ligands. Intramolecular N—H⋯X (X is I or Br) interactions (benzoyl­amine side) lead to slight distortions of the PtII coordination spheres from ideal square‐planar geometry. The PtII ion is located on an inversion centre in both structures.  相似文献   

13.
The crystal structure of the title compound, trans‐[PtI2(C6H12N3P)2], describes one of the few platinum(II) complexes containing two of the water‐soluble 1,3,5‐tri­aza‐7‐phosphaadamantane ligands reported to date. The complex crystallizes on an inversion centre with the most important bond lengths and angles being Pt—P 2.3128 (12) Å, Pt—I 2.6022 (6) Å, P—Pt—I 90.94 (3)° and P′—Pt—I 89.06 (3)°.  相似文献   

14.
Single crystals of (1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)lithium(I) diiodide dihydrate, [Li(C6H16N3O3)(C6H15N3O3)]I2·2H2O or [Li(Htaci)(taci)]I2·2H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol), (I), bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)sodium(I) iodide, [Na(C6H15N3O3)2]I or [Na(taci)2]I, (II), and bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)potassium(I) iodide, [K(C6H15N3O3)2]I or [K(taci)2]I, (III), were grown by diffusion of MeOH into aqueous solutions of the complexes. The structures of the Na and K complexes are isotypic. In all three complexes, the taci ligands adopt a chair conformation with axial hydroxy groups, and the metal cations exhibit exclusive O‐atom coordination. The six O atoms of the resulting MO6 unit define a centrosymmetric trigonal antiprism with approximate D3d symmetry. The interligand O...O distances increase significantly in the order Li < Na < K. The structure of (I) exhibits a complex three‐dimensional network of R—NH2—H...NH2R, R—O—H...NH2R and R—O—H...O(H)—H...NH2R hydrogen bonds. The structures of the Na and K complexes consist of a stack of layers, in which each taci ligand is bonded to three neighbours via pairwise O—H...NH2 interactions between vicinal HO—CH—CH—NH2 groups.  相似文献   

15.
Both title structures exhibit essentially planar barbiturate rings. The crystal structure of enallylpropymal (5‐allyl‐5‐isopropyl‐1‐methylbarbituric acid), C11H16N2O3, is composed of centrosymmetric N—H...O hydrogen‐bonded dimers, while 1,5‐di(but‐2‐enyl)‐5‐ethylbarbituric acid, C14H20N2O3, forms N—H...O hydrogen‐bonded helical chains. Each of the ten known crystal structures of closely related N‐monosubstituted derivatives of barbituric acid displays one of the fundamental N—H...O hydrogen‐bonded motifs of the two title structures, i.e. either a dimer or a chain.  相似文献   

16.
In the title compound, [Mn(C5H3N2O4)2(H2O)2], the MnII atom lies on an inversion centre, is trans‐coordinated by two N,O‐bidentate 1H‐imidazole‐4,5‐di­carboxyl­ate monoanionic ligands [Mn—O = 2.202 (3) Å and Mn—N = 2.201 (4) Å] and two water mol­ecules [Mn—O = 2.197 (4) Å], and exhibits a distorted octahedral geometry, with adjacent cis angles of 76.45 (13), 86.09 (13) and 89.20 (13)°. The complete solid‐state structure can be described as a three‐dimensional supramol­ecular framework, stabilized by extensive hydrogen‐bonding interactions involving the coordinated water mol­ecules, the carboxy O atoms and the protonated imidazole N atoms of the imidazole‐4,5‐di­carboxyl­ate ligands.  相似文献   

17.
The geometrical parameters governing the potential for the photocyclization reaction occurring in crystals of 2,3,4,5,6‐pentamethylbenzophenone, C18H20O, (I), 1,3‐diphenylbutan‐1‐one, C16H16O, (II), and 2,4,6‐triisopropyl‐4′‐methoxybenzophenone, C23H30O2, (IV), have been evaluated. Compound (IV) undergoes photocyclization but (I) and (II) do not, despite the fact that their geometrical parameters appear equally favourable for reaction. The structure of the partially reacted crystal of the photoactive compound, i.e. 2,4,6‐triisopropyl‐4′‐methoxybenzophenone–3,5‐diisopropyl‐7‐(4‐methoxyphenyl)‐8,8‐dimethylbicyclo[4.2.0]octa‐1,3,5‐trien‐7‐ol (9/1), 0.90C23H30O2·0.10C23H30O2, (III), was also determined, providing structural evidence for the reactivity of the compound. It has been found that the carbonyl group of the photoactive compound reacts with one of the two o‐isopropyl groups. The study has shown that the intramolecular geometrical parameters are not the only factors influencing the reactivity of compounds in crystals.  相似文献   

18.
The structure of the title complex consists of isolated [Cd(C7H4NO3S)2(C4H11NO2)2] units. The Cd2+ cation lies on an inversion centre and is octahedrally coordinated by two N,O‐bidentate diethanol­amine (dea) and two N‐bonded saccharinate (sac) ligands [saccharin is 1,2‐benziso­thia­zol‐3(2H)‐one 1,1‐dioxide]. The dea ligands constitute the equatorial plane of the octahedron, forming two five‐membered chelate rings around the CdII ion, while the sac ligands are localized at the axial positions. The Cd—Nsac, Cd—Ndea and Cd—Odea bond distances are 2.3879 (12), 2.3544 (14) and 2.3702 (13) Å, respectively. The H atoms of the free and coordinated hydroxyl groups of the dea ligands are involved in hydrogen bonding with the carbonyl and sulfonyl O atoms of the neighbouring sac ions, while the amine H atom forms a hydrogen bond with the free hydroxyl O atom. The individual mol­ecules are held together by strong hydrogen bonds, forming an infinite three‐dimensional network.  相似文献   

19.
The title compound, 1,3,5‐tris(2‐cyano­ethyl)‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione, C12H12N6O3, forms a layered structure stabilized by C—H?O and C—H?N hydrogen bonds.  相似文献   

20.
In the title compound, [Cu(C6H4NO3)2(H2O)2], the CuII ion lies on an inversion centre and has an elongated octahedral environment, equatorially trans‐coordinated by two N,O‐bidentate picolinate ligands and axially coordinated by two water O atoms. The complex mol­ecules form layers, which are linked by O—H⋯O hydrogen bonds between the aqua ligands and neighbouring carboxyl­ate groups. An intramolecular hydrogen bond between the coordinated carboxyl­ate O atom and the hydroxy H atom is also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号