首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of two distinct polymorphic forms of N‐(2,6‐difluorophenyl)formamide, C7H5F2NO, have been studied using single crystals obtained under different crystallizing conditions. The two forms crystallize in different space groups, viz. form (Ia) in the orthorhombic Pbca and form (Ib) in the monoclinic P21 space group. Each polymorph crystallizes with one complete molecule in the asymmetric unit and they have a similar molecular geometry, showing a trans conformation with the formamide group being out of the plane of the aromatic ring. The packing arrangements of the two polymorphs are quite different, with form (Ia) having molecules that are stacked in an alternating arrangement, linked into chains of N—H...O hydrogen bonds along the crystallographic a direction, while form (Ib) has its N—H...O hydrogen‐bonded molecules stacked in a linear fashion. A theoretical study of the two structures allows information to be gained regarding other contributing interactions, such as π–π and weak C—H...F, in their crystal structures.  相似文献   

2.
The title compound, C4H6N4O·H2O, crystallized simultaneously as a triclinic and a monoclinic polymorph from an aqueous solution of 2,4‐diaminopyrimidin‐6‐ol. Previously, an orthorhombic polymorph was isolated under the same experimental conditions. The molecular geometric parameters in the two present polymorphs and the previously reported orthorhombic polymorph are similar, but the structures differ in the details of their crystal packing. In the triclinic system, the diaminopyrimidinone molecules are connected to one another via N—H...O and N—H...N hydrogen bonding to form infinite chains in the [011] direction. The chains are further hydrogen bonded to the water molecules, resulting in a three‐dimensional network. In the monoclinic system, the diaminopyrimidinone molecules are hydrogen bonded together into two‐dimensional networks parallel to the bc plane. The water molecules link the planes to form a three‐dimensional polymeric structure.  相似文献   

3.
A second, monoclinic, polymorph of the title compound, C14H8Cl2, has been found. In addition to the structure of this monoclinic form, the structure of the previously described orthorhombic form [Desvergne, Chekpo & Bouas‐Laurent (1978). J. Chem. Soc. Perkin Trans. 2, pp. 84–87; Benites, Maverick & Fronczek (1996). Acta Cryst. C 52 , 647–648] has been redetermined at low temperature and using modern methods. The low‐temperature structure of the orthorhombic form is of significantly higher quality than the previously published structure and additional details can be derived. A comparison of the crystal packing of the two forms with a focus on weak intermolecular C—H...Cl interactions shows the monoclinic structure to have one such interaction linking the molecules into infinite ribbons, while two crystallographically independent C—H...Cl interactions give rise to an interesting infinite three‐dimensional network in the orthorhombic crystal form.  相似文献   

4.
Isotopic effect on tautomeric behaviors of the synthesized 5‐phenoxy‐ (1a), 5‐(2,6‐dimethylphenoxy)‐ (1b), 5‐(2,6‐diisopropylphenoxy)‐ (1c), 5‐(2,6‐dimethoxyphenoxy)‐ (1d) and 5‐(4‐methylphenoxy)‐tetrazole (1e) were investigated in DMSO‐d6 by adding one drop of D2O. Among 1a–e, 1a, 1d and 1e show small rotational barrier around C5? O1 and O1? C6 while in 1b and 1c there are distinguishable rotational barrier about that bonds. The 1H NMR spectra of 1b and 1c show slightly different chemical shifts for two methyl and isopropyl groups on those phenyl ring, respectively, while the chemical shifts difference (Δδ) between two methyl and two isopropyl groups were enhanced by adding D2O. The 13C NMR spectra of 1b show two overlapped singlets for methyl groups after adding D2O. Representatively, the calculations of compound 1c were performed with GAUSSIAN‐03and the rotational barrier about C5? O1 and between isopropyl group and phenyl ring in 1c was calculated with B3LYP/6‐31G(d) basis set. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Two polymorphs of 20‐desmethyl‐β‐carotene (systematic name: 20‐nor‐β,β‐carotene), C39H54, in monoclinic and triclinic space groups, were formed in the same vial by recrystallization from pyridine and water. Each polymorph crystallizes with the complete molecule as the asymmetric unit, and the two polymorphs show differing patterns of disorder. The β end rings of both polymorphs have the 6‐scis conformation, and are twisted out of the plane of the polyene chain by angles of −53.2 (8) and 47.3 (8)° for the monoclinic polymorph, and −43.6 (3) and 56.1 (3)° for the triclinic polymorph. The cyclohexene end groups are in the half‐chair conformation, but the triclinic polymorph shows disorder of one ring. Overlay of the molecules shows that they differ in the degree of nonplanarity of the polyene chains and the angles of twist of the end rings. The packing arrangements of the two polymorphs are quite different, with the monoclinic polymorph showing short intermolecular contacts of the disordered methyl groups with adjacent polyene chain atoms, and the triclinic polymorph showing π–π stacking interactions of the almost parallel polyene chains. The determination of the crystal structures of the two title polymorphs of 20‐desmethyl‐β‐carotene allows information to be gained regarding the structural effects on the polyene chain, as well as on the end groups, versus that of the parent compound β‐carotene. The absence of the methyl group is known to have an impact on various functions of the title compound.  相似文献   

6.
Derivatives of 4‐hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto–enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H‐keto tautomer in the solid state. Recrystallization of 2‐amino‐5,6‐dimethyl‐4‐hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H‐keto tautomer, denoted form (I). Though not apparent in the X‐ray data, the IR spectrum suggests that small amounts of the 4‐hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H‐keto and the 3H‐keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one‐dimensional and three‐dimensional hydrogen‐bonding motifs, respectively.  相似文献   

7.
Crystallization (from ethyl acetate solution) of 2‐(4‐chlorophenyl)‐4‐methylchromenium perchlorate, C16H12ClO+·;ClO4, (I), yields two monoclinic polymorphs with the space groups P21/n [polymorph (Ia)] and P21/c [polymorph (Ib)]; in both cases, Z = 4. Cations and anions, disordered in polymorph (Ib), form ion pairs in both polymorphs as a result of Cl—O...π interactions. Related by a centre of symmetry, neighbouring ion pairs in polymorph (Ia) are linked viaπ–π interactions between cationic fragments, and the resulting dimers are linked through a network of C—H...O(perchlorate) interactions between adjacent cations and anions. The ion pairs in polymorph (Ib), arranged in pairs of columns along the a axis, are linked through a network of C—H...O(perchlorate), C—Cl...π, π–π and C—Cl...O(perchlorate) interactions. The aromatic skeletons in polymorph (Ia) are parallel in the cationic fragments involved in dimers, but nonparallel in adjacent ion pairs not constituting dimers. In polymorph (Ib), these skeletons are parallel in pairs of columns, but nonparallel in adjacent pairs of columns; this is visible as a herring‐bone pattern. Differences in the crystal structures of the polymorphs are most probably the cause of their different colours.  相似文献   

8.
Two polymorphs of the title compound, C5H5NO, (I), have been obtained from ethanol. One polymorph crystallizes in the monoclinic space group C2/c [henceforth (I)‐M], while the other crystallizes in the orthorhombic space group Pbca [henceforth (I)‐O]. In the two forms, the lattice parameters, cell volume and packing motifs are very similar. There are also two independent molecules of 4‐pyridone in each asymmetric unit. The molecules are linked by N—H...O hydrogen bonds into one‐dimensional zigzag chains extending along the b axis in the (I)‐M polymorph and along the a axis in the (I)‐O polymorph, with the graph set C22(12). The structures are stabilized by weak C—H...O hydrogen bonds linking adjacent chains, thus forming a ring with the graph set R65(28). The significance of this study lies in the analysis of the hydrogen‐bond interactions occurring in these structures. Analyses of the crystal structures of the two polymorphs of 4‐pyridone are helpful in elucidating the mechanism of the generation of spectroscopic effects observed in the IR spectra of these polymorphs in the frequency range of the N—H stretching vibration band.  相似文献   

9.
The title compound, C24H24N2O2, crystallizes as a triclinic polymorph from dimethyl­formamide and a monoclinic polymorph from ethanol. In both forms, the mol­ecule displays crystallographic inversion symmetry, and the packing involves translationally related `ladders' of mol­ecules connected by N—H⋯O=C hydrogen bonds. Differences between the structures can be rationalized in terms of weak C—H⋯O contacts. Powder and differential scanning calorimetry investigations of new samples gave no evidence for the triclinic form, and it seems to represent a disappearing polymorph.  相似文献   

10.
Colourless crystals of the title compound, bis(2‐bromo­phenyl) di­sulfide, C12H8Br2S2, are obtained from the reaction of 2‐bromo­phenyl­mercaptan with metallic sodium and either zinc chloride or cadmium chloride in methanol. In the presence of ZnII ions, the crystals are orthorhombic (space group Pbca, with Z′ = 1); with CdII ions present, the product is triclinic (space group , with Z′ = 4). Both polymorphs exhibit significant intramolecular C—H⋯S hydrogen bonds. In the ortho­rhombic form, mol­ecules are linked by intermolecular C—H⋯Br hydrogen bonds, while in the triclinic form, mol­ecules exhibit Br⋯Br contacts.  相似文献   

11.
Two polymorphs of bis(2‐carbamoylguanidinium) fluorophosphonate dihydrate, 2C2H7N4O+·FO3P2−·2H2O, are presented. Polymorph (I), crystallizing in the space group Pnma, is slightly less densely packed than polymorph (II), which crystallizes in Pbca. In (I), the fluorophosphonate anion is situated on a crystallographic mirror plane and the O atom of the water molecule is disordered over two positions, in contrast with its H atoms. The hydrogen‐bond patterns in both polymorphs share similar features. There are O—H...O and N—H...O hydrogen bonds in both structures. The water molecules donate their H atoms to the O atoms of the fluorophosphonates exclusively. The water molecules and the fluorophosphonates participate in the formation of R44(10) graph‐set motifs. These motifs extend along the a axis in each structure. The water molecules are also acceptors of either one [in (I) and (II)] or two [in (II)] N—H...O hydrogen bonds. The water molecules are significant building elements in the formation of a three‐dimensional hydrogen‐bond network in both structures. Despite these similarities, there are substantial differences between the hydrogen‐bond networks of (I) and (II). The N—H...O and O—H...O hydrogen bonds in (I) are stronger and weaker, respectively, than those in (II). Moreover, in (I), the shortest N—H...O hydrogen bonds are shorter than the shortest O—H...O hydrogen bonds, which is an unusual feature. The properties of the hydrogen‐bond network in (II) can be related to an unusually long P—O bond length for an unhydrogenated fluorophosphonate anion that is present in this structure. In both structures, the N—H...F interactions are far weaker than the N—H...O hydrogen bonds. It follows from the structure analysis that (II) seems to be thermodynamically more stable than (I).  相似文献   

12.
The title compound, C17H13NO4, crystallizes in two polymorphic forms, each with two molecules in the asymmetric unit and in the monoclinic space group P21/c. All of the molecules have intramolecular hydrogen bonds involving the amide group. The amide N atoms act as donors to the carbonyl group of the pyrone and also to the methoxy group of the benzene ring. The carbonyl O atom of the amide group acts as an acceptor of the β and β′ C atoms belonging to the aromatic rings. These intramolecular hydrogen bonds have a profound effect on the molecular conformation. In one polymorph, the molecules in the asymmetric unit are linked to form dimers by weak C—H...O interactions. In the other, the molecules in the asymmetric unit are linked by a single weak C—H...O hydrogen bond. Two of these units are linked to form centrosymmetric tetramers by a second weak C—H...O interaction. Further interactions of this type link the molecules into chains, so forming a three‐dimensional network. These interactions in both polymorphs are supplemented by π–π interactions between the chromone rings and between the chromone and methoxyphenyl rings.  相似文献   

13.
Polymorph (Ia) (m.p. 474 K) of the title compound, C12H18N2O3, displays an N—H...O=C hydrogen‐bonded layer structure which contains R66(28) rings connecting six molecules, as well as R22(8) rings linking two molecules. The 3‐connected hydrogen‐bonded net resulting from these interactions has the hcb topology. Form (Ib) (m.p. 471 K) displays N—H...O=C hydrogen‐bonded looped chains in which neighbouring molecules are linked to one another by two different R22(8) rings. Polymorph (Ia) is isostructural with the previously reported form II of 5‐(2‐bromoallyl)‐5‐isopropylbarbituric acid (noctal) and polymorph (Ib) is isostructural with the known crystal structures of four other barbiturates.  相似文献   

14.
We obtained two conformational polymorphs of 2,5‐dichloro‐3,6‐bis(dibenzylamino)‐p‐hydroquinone, C34H30Cl2N2O2. Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z′ = ), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face‐to‐edge motif between adjacent molecules, with intermolecular C—H…π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.  相似文献   

15.
Two polymorphs of (2‐carboxyethyl)(phenyl)phosphinic acid, C9H11O4P, crystallize in the chiral P212121 space group with similar unit‐cell parameters. They feature an essentially similar hydrogen‐bonding motif but differ slightly in their detailed geometric parameters. For both polymorphs, the unequivocal location of the hydroxy H atoms together with the expected differences in the P—O bond lengths establish unequivocally that both forms contain the S isomer; the protonated phosphinic acid and carboxy O atoms serve as hydrogen‐bond donors, while the second phosphinic acid O atom acts as a double hydrogen‐bond acceptor and the remaining carboxy O atom is not involved in hydrogen bonding. Thus, an undulating two‐dimensional supramolecular layer aggregate is formed based on an R43(20) ring unit. Such polymorphism derives from the rotation of the C—C single bonds between the two hydrogen‐bond‐involved carboxy and phosphinic acid moieties.  相似文献   

16.
The ɛ‐form of chlorpropamide [systematic name: 4‐chloro‐N‐(propylaminocarbonyl)benzenesulfonamide], C10H13ClN2O3S, has been obtained as single crystals from solution (and not as a polycrystalline sample by heating the α‐, γ‐ or δ‐forms). The results of anisotropic structure refinements for the ɛ‐ and δ‐forms are reported. The density of the δ‐polymorph is the highest, and that of the ɛ‐polymorph the lowest, among the five known chlorpropamide polymorphs. The main intermolecular hydrogen‐bonding pattern in polymorphs δ and ɛ is the same as in polymorphs α, β and γ, but the conformations differ. The densities of the polymorphs were found to depend on the molecular conformations.  相似文献   

17.
The title compound, C48H36N2S4, can be crystallized as two polymorphic structures, (I) and (II), both of which are in the triclinic space group P and possess Ci symmetry. In the crystal structure of polymorph (I), the adjacent naphthalene moieties are orientated towards one another and are inclined to one another by 78.7 (1)°, resulting in weak C—H⋯π interactions. In polymorph (II), the adjacent substituents are orientated away from one another, enclosing the pyrazine N atoms. In this way, the S atom of one substituent sits below the plane of the naphthalene ring of the other substituent.  相似文献   

18.
Two polymorphs of the title compound, C16H16O3, have been obtained from the same solution. One polymorph, (Im), crystallizes in the monoclinic space group P21, while the other, (Io), crystallizes in the orthorhombic space group P212121. The cell constants of the two polymorphs are surprisingly similar. Whereas the a and b axes are equal in the two structures, the c axis in (Io) is twice as long as that in (Im). The monoclinic angle β is 95.084 (9)° compared with 90° in the orthorhombic crystal system. The cell volume of (Im) is almost exactly half of the cell volume of (Io). The packing motifs are also very similar in the two structures. However, whereas the molecules in (Im) are related by a twofold screw axis just in the direction of the b axis, in (Io) there are twofold screw axes along all three directions of the unit cell.  相似文献   

19.
Two polymorphs of the title organic salt (a very effective medicinal preparation with the commercial name thiotriazoline), C4H10NO+·C5H6N3O2S, were obtained. The cations and anions are connected by hydrogen bonds and extend into two‐dimensional networks. The main packing motifs are an R44(12) cluster in the monoclinic form and a chain in the orthorhombic form.  相似文献   

20.
Two distinct polymorphs of bis(μ2‐methylquinolin‐8‐olato)‐κ3N,O:O3O:N,O‐bis[(isothiocyanato‐κN)lead(II)], [Pb2(C10H8NO)2(NCS)2], (I), forming dinuclear complexes from a methanolic solution containing lead(II) nitrate, 2‐methylquinolin‐8‐ol (M‐Hq) and KSCN, crystallized concomitantly as colourless prisms [form (Ia)] and long thin colourless needles [form (Ib)]. In both cases, the complexes lie across a centre of inversion. The polymorphs differ substantially in their conformation and in their interactions, viz. Pb...S and π–π for form (Ia) and Pb...S, Pb...π and C—H...π for form (Ib).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号