首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4‐Hydroxypyridine and terephthalic acid cocrystallize as a hydrate, 4‐pyridone–terephthalic acid–water (2/1/2), 2C5H5NO·C8H6O4·2H2O, from a methanol–water solution. The molecules form a two‐dimensional hydrogen‐bonded network resulting in sheets of hydrogen‐bonded molecules that lie parallel to the (10) plane. In contrast, 3‐hydroxypyridine and terephthalic acid form the salt bis(3‐hydroxypyridinium) terephthalate, 2C5H6NO+·C8H4O42−, giving rise to two‐dimensional hydrogen‐bonded sheets extending through the lattice parallel to the (10) plane.  相似文献   

2.
In solid‐state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5‐fluorouracil (5FU; systematic name: 5‐fluoro‐1,3‐dihydropyrimidine‐2,4‐dione), namely 5‐fluorouracil–5‐bromothiophene‐2‐carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5‐fluorouracil–thiophene‐2‐carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 22(8) homosynthon (O—H…O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 22(8) motif] via a pair of N—H…O hydrogen bonds. The crystal structures are further stabilized by C—H…O interactions in (II) and C—Br…O interactions in (I). In both crystal structures, π–π stacking and C—F…π interactions are also observed.  相似文献   

3.
In xanthinium nitrate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium nitrate monohydrate], C5H5N4O2+·NO3·H2O, (I), and xanthinium hydrogen sulfate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium hydrogen sulfate monohydrate], C5H5N4O2+·HSO4·H2O, (II), the xanthine molecules are protonated at the imine N atom with the transfer of an H atom from the inorganic acid. The asymmetric unit of (I) contains a xanthinium cation, a nitrate anion and one water molecule, while that of (II) contains two crystallographically independent xanthinium cations, two hydrogen sulfate anions and two water molecules. A pseudo‐quadruple hydrogen‐bonding motif is formed between the xanthinium cations and the water molecules via N—H...O and O—H...O hydrogen bonds in both structures, and leads to the formation of one‐dimensional polymeric tapes. These cation–water tapes are further connected by the respective anions and aggregate into two‐dimensional hydrogen‐bonded sheets in (I) and three‐dimensional arrangements in (II).  相似文献   

4.
The structures of two pseudopolymorphic hydrates of brucine, C23H26N2O4·4H2O, (I), and C23H26N2O4·5.25H2O, (II), have been determined at 130 K. In both (I) and (II) (which has two independent brucine mol­ecules together with 10.5 water mol­ecules of solvation in the asymmetric unit), the brucine mol­ecules form head‐to‐tail sheet substructures, which associate with the water mol­ecules in the inter­stitial cavities through hydrogen‐bonding associations and, together with water–water associations, give three‐dimensional framework structures.  相似文献   

5.
The crystal structures of three proton‐transfer compounds of 5‐sulfosalicylic acid (3‐carboxy‐4‐hydroxy­benzene­sulfonic acid) with 4‐X‐substituted anilines (X = F, Cl and Br), namely 4‐fluoro­anilinium 5‐sulfosalicylate (3‐carboxy‐4‐hydroxybenzenesulfonate) monohydrate, C6H7FN+·C7H5O6S·H2O, (I), 4‐chloro­anilinium 5‐sulfosalicylate hemihydrate, C6H7ClN+·C7H5O6S·0.5H2O, (II), and 4‐bromo­anilinium 5‐sulfosalicylate monohydrate, C6H7BrN+·C7H5O6S·H2O, (III), have been determined. The asymmetric unit in (II) contains two formula units. All three compounds have three‐dimensional hydrogen‐bonded polymeric structures in which both the water molecule and the carboxylic acid group are involved in structure extension. With both (II) and (III), which are structurally similar, the common cyclic (8) dimeric carboxylic acid association is present, whereas in (I), an unusual cyclic (8) association involving all three hetero‐species is found.  相似文献   

6.
Crystals of 5‐chloropyridin‐2‐amine–(2E)‐but‐2‐enedioate (2/1), 2C5H5ClN2·C4H4O4, (I), and 2‐aminopyridinium dl ‐3‐carboxy‐2‐hydroxypropanoate, C5H7N2+·C4H5O5, (II), are built from the neutral 5‐chloropyridin‐2‐amine molecule and fumaric acid in the case of (I) and from ring‐N‐protonated 2‐aminopyridinium cations and malate anions in (II). The fumaric acid molecule lies on an inversion centre. In (I), the neutral 5‐chloropyridin‐2‐amine and fumaric acid molecules interact via hydrogen bonds, forming two‐dimensional layers parallel to the (100) plane, whereas in (II), oppositely charged units interact via ionic and hydrogen bonds, forming a three‐dimensional network.  相似文献   

7.
The title cobalt coordination polymers, catena‐poly[[[aquatripyridinecobalt(II)]‐μ‐tetrachloroterephthalato] pyridine solvate], {[Co(C8Cl4O4)(C5H5N)3(H2O)]·C5H5N}n, (I), and catena‐poly[[[diaquadipyridinecobalt(II)]‐μ‐tetrachloroterephthalato] 1,4‐dioxane trihydrate], {[Co(C8Cl4O4)(C5H5N)2(H2O)2]·C4H8O2·3H2O}n, (II), have been prepared with tetrachloroterephthalic acid (H2BDC‐Cl4) under different solvent media. Both complexes form infinite cobalt(II)–tetrachloroterephthalate polymeric chains. In (I), two independent CoII ions are six‐coordinated through N3O3 donor sets in slightly distorted octahedral geometries provided by two carboxylate and three pyridine ligands, and one water molecule. The structure of (II) contains two independent CoII atoms, each lying on a twofold axis, which adopt a tetragonally distorted N2O4 octahedral geometry via two carboxylate groups, two pyridine ligands and two water molecules. The different stoichiometry of coordinated and solvent guest molecules leads to different two‐dimensional supramolecular networks, with (I) utilizing C—H...π and weak π–π interactions and (II) utilizing mainly conventional hydrogen bonding.  相似文献   

8.
The present paper reports the structures of bis(adeninium) zoledronate tetrahydrate {systematic name: bis(6‐amino‐7H‐purin‐1‐ium) hydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)‐1‐phosphonatoethyl]phosphonate tetrahydrate}, 2C5H6N5+·C5H8N2O7P22−·4H2O, (I), and bis(adeninium) zoledronate hexahydrate {systematic name: a 1:1 cocrystal of bis(6‐amino‐7H‐purin‐1‐ium) hydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)‐1‐phosphonatoethyl]phosphonate hexahydrate and 6‐amino‐7H‐purin‐1‐ium 6‐amino‐7H‐purine dihydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)ethane‐1,1‐diyl]diphosphonate hexahydrate}, 2C5H6N5+·C5H8N2O7P22−·6H2O, (II). One of the adenine molecules and one of the phosphonate groups of the zoledronate anion of (II) are protonated on a 50% basis. The zoledronate group displays its usual zwitterionic character, with a protonated imidazole ring; however, the ionization state of the phosphonate groups of the anion for (I) and (II) are different. In (I), the anion has both singly and doubly deprotonated phosphonate groups, while in (II), it has one singly deprotonated phosphonate group and a partially deprotonated phosphonate group. In (I), the cations form an R22(10) base pair, while in (II), they form R22(8) and R22(10) base pairs. Two water molecules in (I) and five water molecules in (II) are involved in water–water interactions. The presence of an additional two water molecules in the structure of (II) might influence the different ionization state of the anion as well as the different packing mode compared to (I).  相似文献   

9.
In dibenzylammonium hydrogen maleate [or dibenzylammonium (2Z)‐3‐carboxyprop‐2‐enoate], C14H16N+·C4H3O4, (I), the anion contains a fairly short and nearly linear O—H...O hydrogen bond, with an O...·O distance of 2.4603 (16) Å, but with the H atom clearly offset from the mid‐point of the O...O vector. The counter‐ions in (I) are linked by two N—H...O hydrogen bonds to form C22(6) chains and these chains are weakly linked into sheets by a C—H...O hydrogen bond. Bis(dibenzylamino)methane, C29H30N2, (II), crystallizes with two independent molecules lying across twofold rotation axes in the space group C2/c, and the molecules are conformationally chiral; there are no direction‐specific intermolecular interactions in the crystal structure of (II).  相似文献   

10.
The zinc alkoxide molecules in di‐μ3‐ethanolato‐diethyltetrakis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)tetrazinc(II), [Zn4(C2H5)2(C2H5O)2(C6H5O3)4], (I), and bis(μ3‐2‐ethoxyphenolato‐κ4O1,O2:O1:O1)bis(μ2‐2‐ethoxyphenolato‐κ3O1,O2:O1)bis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)bis(2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ2O3,O4)tetrazinc(II) toluene disolvate, [Zn4(C6H5O3)4(C8H9O2)4]·2C7H8, (II), lie on crystallographic centres of inversion. The asymmetric units of (I) and (II) contain half of the tetrameric unit and additionally one molecule of toluene for (II). The ZnII atoms are four‐ and six‐coordinated in distorted tetrahedral and octahedral geometries for (I), and six‐coordinated in a distorted octahedral environment for (II). The ZnII atoms in both compounds are arranged in a defect dicubane Zn4O6 core structure composed of two EtZnO3 tetrahedra and ZnO6 octahedra for (I), and of four ZnO6 octahedra for (II), sharing common corners. The maltolate ligands exist mostly in a μ2‐bridging mode, while the guetholate ligands prefer a higher coordination mode and act as μ3‐ and μ2‐bridges.  相似文献   

11.
The structures of N‐fluoro­pyridinium tri­fluoro­methane­sulfon­ate, C5H5FN+·CF3O3S, (I), and 1‐fluoro‐2,4,6‐tri­methoxy‐1,3,5‐triazinium hexa­fluoro­antimonate, (C6H9FN3O3)[SbF6], (II), are presented. The N—F bond lengths in (I), a well known electrophilic fluorinating agent, and its novel analogue, (II), are 1.357 (4) and 1.354 (4) Å, respectively.  相似文献   

12.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

13.
In the benzene and phenol solvates of (S)‐4‐{3‐[2‐(dimethylamino)ethyl]‐1H‐indol‐5‐ylmethyl}oxazolidin‐2‐one, viz. C16H21N3O2·C6H6, (I), and C16H21N3O2·C6H5OH, (II), the host molecule has three linked residues, namely a planar indole ring system, an ethylamine side chain and an oxazolidinone system. It has comparable features to that of sumatriptan, although the side‐chain orientations of (I) and (II) differ from those of sumatriptan. Both (I) and (II) have host–guest‐type structures. The host molecule in (I) and (II) has an L‐shaped form, with the oxazolidinone ring occupying the base and the remainder of the molecule forming the upright section. In (I), each benzene guest molecule is surrounded by four host molecules, and these molecules are linked by a combination of N—H...N, N—H...O and C—H...O hydrogen bonds into chains of edge‐fused R44(33) rings. In (II), two independent molecules are present in the asymmetric unit, with similar conformations. The heterocyclic components are connected through N—H...N, N—H...O and C—H...O interactions to form chains of edge‐fused R64(38) rings, from which the phenol guest molecules are pendent, linked by O—H...O hydrogen bonds. The structures are further stabilized by extensive C—H...π interactions.  相似文献   

14.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

15.
The title compounds, tris(1,10‐phenanthroline‐κ2N,N′)iron(II) bis(2,4,5‐tricarboxybenzoate) monohydrate, [Fe(C12H8N2)3](C10H5O8)2·H2O, (I), and tris(2,2′‐bipyridine‐κ2N,N′)iron(II) 2,5‐dicarboxybenzene‐1,4‐dicarboxylate–benzene‐1,2,4,5‐tetracarboxylic acid–water (1/1/2), [Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O, (II), were obtained during an attempt to synthesize a mixed‐ligand complex of FeII with an N‐containing ligand and benzene‐1,2,4,5‐tetracarboxylic acid via a solvothermal reaction. In both mononuclear complexes, each FeII metal ion is six‐coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10‐phenanthroline or 2,2′‐bipyridine ligands. In compound (I), the FeII atom lies on a twofold axis in the space group C2/c, whereas (II) crystallizes in the space group P21/n. In both compounds, the uncoordinated carboxylate anions and water molecules are linked by typical O—H...O hydrogen bonds, generating extensive three‐dimensional hydrogen‐bond networks which surround the cations.  相似文献   

16.
The structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with 8‐hydroxyquinoline, 8‐aminoquinoline and quinoline‐2‐carboxylic acid (quinaldic acid), namely anhydrous 8‐hydroxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H8NO+·C8H3Cl2O4, (I), 8‐aminoquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2‐carboxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate quinolinium‐2‐carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one‐dimensional hydrogen‐bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen‐bonded cyclic R22(10) pseudo‐dimer unit comprising a protonated quinaldic acid cation and a zwitterionic quinaldic acid adduct molecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl interactions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive‐group‐substituted quinoline cations in the formation of low‐dimensional hydrogen‐bonded structures.  相似文献   

17.
The structures of diastereomeric pairs consisting of (S)‐ and (R)‐2‐methylpiperazine with (2S,3S)‐tartaric acid are both 1:1 salts, namely (S)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (I), and (R)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (II), which reveal the formation of well defined ammonium carboxylate salts linked via strong intermolecular hydrogen bonds. Unlike the situation in the more soluble salt (II), the alternating columns of tartrate and ammonium ions of the less soluble salt (I) are packed neatly in a grid around the a axis, which incorporates water molecules at regular intervals. The increased efficiency of packing for (I) is evident in its lower `packing coefficient', and the hydrogen‐bond contribution is stronger in the more soluble salt (II).  相似文献   

18.
In order to better understand the interaction between the pharmaceutically active compound 5‐fluorocytosine [4‐amino‐5‐fluoropyrimidin‐2(1H)‐one] and its receptor, hydrogen‐bonded complexes with structurally similar bonding patterns have been investigated. During the cocrystallization screening, three new pseudopolymorphs of 5‐fluorocytosine were obtained, namely 5‐fluorocytosine dimethyl sulfoxide solvate, C4H4FN3O·C2H6OS, (I), 5‐fluorocytosine dimethylacetamide hemisolvate, C4H4FN3O·0.5C4H9NO, (II), and 5‐fluorocytosine hemihydrate, C4H4FN3O·0.5H2O, (III). Similar hydrogen‐bond patterns are observed in all three crystal structures. The 5‐fluorocytosine molecules form ribbons with repeated R22(8) dimer interactions. These dimers are stabilized by N—H...N and N—H...O hydrogen bonds. The solvent molecules adopt similar positions with respect to 5‐fluorocytosine. Depending on the hydrogen bonds formed by the solvent, the 5‐fluorocytosine ribbons form layers or tubes. A database study was carried out to compare the hydrogen‐bond pattern of compounds (I)–(III) with those of other (pseudo)polymorphs of 5‐fluorocytosine.  相似文献   

19.
Molecules of 1,3‐dimethyl‐7‐(4‐methylphenyl)pyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C16H15N3O2, (I), are linked by paired C—H...O hydrogen bonds to form centrosymmetric R22(10) dimers, which are linked into chains by a single π–π stacking interaction. A single C—H...O hydrogen bond links the molecules of 7‐(biphenyl‐4‐yl)‐1,3‐dimethylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C21H17N3O2, (II), into C(10) chains, which are weakly linked into sheets by a π–π stacking interaction. In 7‐(4‐fluorophenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C14H10FN3O2, (III), an N—H...O hydrogen bond links the molecules into C(6) chains, which are linked into sheets by a π–π stacking interaction. The molecules of 7‐(4‐methoxyphenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C15H13N3O3, (IV), are also linked into C(6) chains by an N—H...O hydrogen bond, but here the chains are linked into sheets by a combination of two independent C—H...π(arene) hydrogen bonds.  相似文献   

20.
Green crystals of the title compound, C14H14I2O2Te·0.5C2H6OS, space group P32, show twinning by merohedry (class II). The asymmetric unit contains two organotellurium molecules and one dimethyl sulfoxide (DMSO) molecule. The crystal structure displays secondary Te...I and Te...O(DMSO) bonds that lead to [(4‐MeOC6H4)2TeI2]2·DMSO supramolecular units in which the two independent organotellurium molecules are bridged by the DMSO O atom. In addition to these secondary bonds, I...I interactions link translationally equivalent organotellurium molecules to form nearly linear ...I—Te—I...I—Te—I... chains. These chains are crosslinked, forming two‐dimensional arrays parallel to (001). The crystal packing consists of a stacking of these sheets, which are related by the 32 axis. This study describes an unusual dimeric arrangement of X—Te—X groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号