首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The title salt, bis[2,3‐bis(aminocarbonyl)‐8,9‐bis(methylsulfanyl)tetrathiafulvalenium] di‐μ‐bromido‐bis[bromidocopper(II)], (C10H10N2O2S6)2[Cu2Br4], contains 2,3‐bis(aminocarbonyl)‐8,9‐bis(methylsulfanyl)tetrathiafulvalenium radical cations, [DMT‐TTF(CONH2)2]·+, and [Cu2Br4]2− anions. The cations are associated across centres of inversion in a head‐to‐tail fashion via short face‐to‐face S...S stacking (TTF moiety). These dimers are further assembled into a one‐dimensional chain structure via interdimer double S...S contacts involving the methylsulfanyl groups. The one‐dimensional chains give rise to a two‐dimensional structure through intermolecular double N—H...O hydrogen bonds involving the amide group. The [Cu2Br4]2− anions, which straddle centres of inversion, are located between the cation layers. Electron paramagnetic resonance measurements show a radical signal, indicating that the two TTF·+ radicals are not completely coupled in the dimer.  相似文献   

2.
Four complexes containing the [UO2(oda)2]2− anion (oda is oxydiacetate) are reported, namely dipyridinium dioxidobis(oxydiacetato)uranate(VI), (C5H6N)2[U(C4H4O5)2O2], (I), bis(2‐methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (II), bis(3‐methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (III), and bis(4‐methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (IV). The anions are achiral and are located on a mirror plane in (I) and on inversion centres in (II)–(IV). The four complexes are assembled into three‐dimensional structures via N—H...O and C—H...O interactions. Compounds (III) and (IV) are isomorphous; the [UO2(oda)2]2− anions form a porous matrix which is nearly identical in the two structures, and the cations are located in channels formed in this matrix. Compounds (I) and (II) are very different from (III) and (IV): (I) forms a layered structure, while (II) forms ribbons.  相似文献   

3.
By using alternating‐current electrochemical synthesis, crystals of the CuIπ‐complexes bis(1‐allyl‐2‐amino­pyridinium) di‐μ‐chloro‐bis­[chloro­copper(I)], (C8H11N2)2[Cu2Cl4] or [H2NC5H4NC3H5][CuCl2], and bis(1‐allyl‐2‐amino­pyridinium) di‐μ‐(chloro/bromo)‐bis­[(chloro/bromo)copper(I)], (C8H11N2)2[Cu2Br2.2Cl1.8] or [H2NC5H4NC3H5][CuBr1.10Cl0.90], have been obtained and structurally investigated. In each of the isostructural (isomorphous) compounds, the distorted tetrahedral Cu environment involves three halide atoms and the C=C bond of the ligand. Both compounds reside on inversion centres, and the dimeric [Cu2X4·2H2NC5H4NC3H5] units are bonded into a three‐dimensional structure by N—H⋯X hydrogen bonds. The Br content in the terminal X1 position is much higher than that in the bridged X2 site.  相似文献   

4.
The crystal structures of six halobismuth(III) salts of variously substituted aminopyridinium cations display discrete mononuclear [BiCl6]3? and dinuclear [Bi2X10]4? anions (X = Cl or Br), and polymeric cis‐double‐halo‐bridged [BinX4n]n? anionic chains (X = Br or I). Bis(2‐amino‐3‐ammoniopyridinium) hexachloridobismuth(III) chloride monohydrate, (C5H9N3)2[BiCl6]Cl·H2O, (1), contains discrete mononuclear [BiCl6]3? and chloride anions. Tetrakis(2‐amino‐3‐methylpyridinium) di‐μ‐chlorido‐bis[tetrachloridobismuth(III)], (C6H9N2)4[Bi2Cl10], (2), tetrakis(2‐amino‐3‐methylpyridinium) di‐μ‐bromido‐bis[tetrabromidobismuth(III)], (C6H9N2)4[Bi2Br10], (3), and bis(4‐amino‐3‐ammoniopyridinium) di‐μ‐chlorido‐bis[tetrachloridobismuth(III)] dihydrate, (C5H9N3)2[Bi2Cl10]·2H2O, (4), incorporate discrete [Bi2X10]4? anions (X = Cl or Br), while catena‐poly[2,6‐diaminopyridinium [[cis‐diiodidobismuth(III)]‐di‐μ‐iodido]], {(C5H8N3)[BiI4]}n, (5), and catena‐poly[2,6‐diaminopyridinium [[cis‐dibromidobismuth(III)]‐di‐μ‐bromido]], {(C5H7N2)[BiBr4]}n, (6), include [BinX4n]n? anionic chains (X = Br or I). Structures (2) and (3) are isostructural, while that of (5) is a pseudomerohedral twin. There is no discernible correlation between the type of anionic species obtained and the cation or halide ligand used. The BiIII centres always have a slightly distorted octahedral geometry and there is a correlation between the Bi—X bond lengths and the number of classic N—H…X hydrogen bonds that the X ligand accepts, with a greater number of interactions corresponding with slightly longer Bi—X distances. The supramolecular networks formed by classic N—H…X hydrogen bonds include ladders, bilayers and three‐dimensional frameworks.  相似文献   

5.
In the coordination chemistry of palladium, dimers bridged via halides are a common motif. Higher oligomers, however, are still rare. We report the structure of an alternating eight‐membered [Pd4Br4]4− ring framed by cycloheptatrienide ligands, which was obtained by cocrystallization of dimers and tetramers of the complex salt bromido{η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II) tetrafluoroborate, namely bis[di‐μ‐bromido‐bis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II))] cyclo‐tetra‐μ‐bromido‐tetrakis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II)) octakis(tetrafluoroborate) dichloromethane octasolvate, [Pd4Br4(C22H26N2)4][Pd2Br2(C22H26N2)2]2(BF4)8·8CH2Cl2. These dimers and tetramers form a highly dynamic equilibrium in solution which was studied by low‐temperature NMR spectroscopy. In the light of the presented results, tetrameric PdII species can be assumed to co‐exist as a second species in many cases where by current knowledge only a dimeric compound would be expected.  相似文献   

6.
The structures of three isomorphous compounds, namely bis(2,6‐dibromopyridinium) tetrabromidocuprate(II) dihydrate, (C5H4Br2N)2[CuBr4]·2H2O, bis(2,6‐dibromopyridinium) tetrabromidocadmate(II) dihydrate, (C5H4Br2N)2[CdBr4]·2H2O, and bis(2,6‐dibromopyridinium) tetrabromidomercurate(II) dihydrate, (C5H4Br2N)2[HgBr4]·2H2O, show a crystal supramolecularity represented by M—Br...H—O—H...Br—M intermolecular interactions along with (π)N—H...OH2 hydrogen‐bonding interactions forming layers connected via aryl–aryl face‐to‐face stacking of cations, leading to a three‐dimensional network. The anions have significantly distorted tetrahedral geometry and crystallographic C2 symmetry. The stability of this crystal lattice is evidenced by the crystallization of a whole series of isomorphous compounds.  相似文献   

7.
The compounds tert‐butylarsenium(III) tri‐μ‐chlorido‐bis[trichloridotitanium(IV)], (C4H12As)[Ti2Cl9] or [tBuAsH3][Ti2(μ‐Cl)3Cl6], (II), and bis[bromidotriphenylarsenium(V)] di‐μ‐bromido‐μ‐oxido‐bis[tribromidotitanium(IV)], (C18H15AsBr)2[Ti2Br8O] or [Ph3AsBr]2[Ti2(μ‐O)(μ‐Br)2Br6], (III), were obtained unexpectedly from the reaction of simple arsane ligands with TiIV halides, with (II) lying on a mirror plane in the unit cell of the space group Pbcm. Both compounds contain a completely novel ion, with [tBuAsH3]+ constituting the first structurally characterized example of a primary arsenium cation. The oxide‐bridged titanium‐containing [Ti2(μ‐O)(μ‐Br)2Br6]2− dianion in (III) is also novel, while the bromidotriphenylarsenium(V) cation is structurally characterized for only the second time.  相似文献   

8.
A new organic–inorganic hybrid compound, catena‐poly[bis(1‐ethyl‐3‐methylimidazolium) [μ5‐bromido‐tri‐μ3‐bromido‐tri‐μ2‐bromido‐pentacuprate(I)]], {(C6H11N2)2[Cu5Br7]}n, has been obtained under ionothermal conditions from a reaction mixture containing Ba(OH)2·8H2O, Cu(OH)2·2H2O, As2O5, 1‐ethyl‐3‐methylimidazolium bromide and distilled water. The crystal structure consists of complex [Cu5Br7]2− anions arranged in sinusoidal {[Cu5Br7]2−}n chains running along the a axis, which are surrounded by 1‐ethyl‐3‐methylimidazolium cations. Three of the five unique Br atoms and one of the three CuI atoms occupy special positions with half‐occupancy (a mirror plane perpendicular to the b axis, site symmetry m). The CuI ions are in a distorted tetrahedral coordination environment, with four Br atoms at distances ranging from 2.3667 (10) to 2.6197 (13) Å, and an outlier at 3.0283 (12) Å, exceptionally elongated and with a small contribution to the bond‐valence sum of only 6.7%. Short C—H...Br contacts build up a three‐dimensional network. The Cu...Cu distances within the chain range from 2.8390 (12) to 3.0805 (17) Å, indicating the existence of weak CuI...CuI cuprophilic interactions.  相似文献   

9.
Abstract. By direct reactions of selenium with halogen and trimethylphenylammonium halogenide and tetraphenylphosphonium, ethyltriphenylphosphonium, and methyltriphenylphosphonium bromides, the tetrahalogenidoselenates(II) – bis(trimethylphenylammonium)tetrabromidoselenate(II) bromide, [NPhMe3]2[SeBr4] · [NPhMe3]Br, a mixed bis(trimethylphenylammonium) tetra(bromido/chlorido)selenate(II), [NPhMe3]2[SeBr4–xClx] · [NPhMe3]2SeBr1–yCly], [NPhMe3]2[SeBr4–xClx],the haxahalogenidodiselenates(II) – bis(trimethylphenylammonium) hexabromidodiselenate(II), [NPhMe3]2[Se2Br6], bis(trimethylphenylammonium) hexachloridodiselenate(II), [NPhMe3]2[Se2Cl6], a mixed bis(trimethylphenylammonium) bromido/chlorido‐diselenate(II), [NPhMe3]2[Se2Br5Cl], bis(tetraphenylphosphonium) hexabromidodiselenate(II), [PPh4]2[Se2Br6], bis(ethyltriphenylphosphonium) hexabromidodiselenate(II), [PEtPh3]2[Se2Br6], and bis(methyltriphenylphosphonium) hexabromidodiselenate(II), [PMePh3]2[Se2Br6], were prepared. By the reaction of selenium with bromine in acetonitrile in the presence of trimethylphenylammonium, benzyltrimethylammonium, and tetramethylammonium bromides, the salts of the unique bromidoselenate(I) anions – bis(trimethylphenylammonium) hexabromidotetraselenate(I), [NPhMe3]2[Se4Br6], bis(benzyltrimethylammonium) hexabromidotetraselenate(I), [NBzMe3]2[Se4Br6], and bis(tetramethylammonium) octadecabromidohexadecaselenate(I), [NMe4]2[Se16Br18], were isolated. First mixed‐valence bromidoselenates(II/I) – bis(tetraethylammonium) octabromidotriselenate(II){dibromidodiselenate(I)}, [NEt4]2[Se3Br8(Se2Br2)], bis(tetraphenylphosphonium) hexabromidodiselenate(II)‐bis{dibromidodiselenate(I)}, [PPh4]2[Se2Br6(Se2Br2)2], and tetrakis(tetramethylammonium) bis{decabromidotetraselenate(II)}‐bis{dibromidodiselenate(I)}, [(CH3)4N]4[(Se4Br10)2(Se2Br2)2] – were synthesized. Mixed bis(trimethylphenylammonium) hexabromidoselenate/tellurate(IV), [NPhMe3]2[Se0.75Te0.25Br6], catena‐poly[(di‐μ‐bromidobis‐{tetrabromidoselenate/tellurate(IV)})‐ μ‐bromine], [NPhMe3]2n[Se1.5Te0.5Br10 · Br2]n were isolated. First mixed‐valence bromidoselenate(IV/I)‐bis(trimethylphenylammonium) hexabromidoselenate(IV)‐bis{dibromidodiselenate(I)}, [NPhMe3]2[SeBr6(Se2Br2)2], a number of mixed bromidochalcogenates(IV/I) – bis(trimethylphenylammonium), bis(tetraethylphosphonium), bis(ethyltriphenylphosphonium) hexabromidotellurates(IV)‐bis{dibromidodiselenates(I)}, [NPhMe3]2[TeBr6(Se2Br2)2], [PEt4]2[TeBr6(Se2Br2)2], [PEtPh3]2[TeBr6(Se2Br2)2], bis(triethylmethylammonium) hexabromidotellurate(IV)‐tris{dibromidodiselenate(I)}, [NMeEt3]2n[TeBr6(Se2Br2)3]n, were synthesized. Mixed‐valence bromidoselenate(IV/II) – bis(methyltriphenylphosphonium) hexabromidoselenate(IV)‐bis{dibromidoselenate(II)},[PMePh3]2[SeBr6(SeBr2)2], received by direct synthesis and two mixed‐valence bromidochalcogenates(IV/II) – bis(methyltriphenylphosphonium) and bis(tetrapropylammonium) hexabromidotellurates(IV)‐selenates(II), [PMePh3]2[TeBr6(SeBr2)2] and [NnPr4]2[TeBr6(SeBr2)2], were synthesized from elemental selenium, tellurium dioxide, and corresponding onium bromide. The structures of all compounds were determined by X‐ray diffraction.  相似文献   

10.
The title compound, catena‐poly[[bis[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐di‐μ‐cyanido‐κ4N:C‐palladate(II)‐di‐μ‐cyanido‐κ4C:N] dibromide bis[[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐μ‐cyanido‐κ2N:C‐[dicyanidopalladate(II)]‐μ‐cyanido‐κ2C:N] monohydrate], {[Cu2Pd(CN)4(C6H15N3)2]Br2·[Cu2Pd2(CN)8(C6H15N3)2]·H2O}n, (I), was isolated from an aqueous solution containing tacn·3HBr (tacn is 1,4,7‐triazacyclononane), Cu2+ and tetracyanidopalladate(2−) anions. The crystal structure of (I) is essentially ionic and built up of 2,2‐electroneutral chains, viz. [Cu(tacn)(NC)–Pd(CN)2–(CN)–], positively charged 2,4‐ribbons exhibiting the composition {[Cu(tacn)(NC)2–Pd(CN)2–Cu(tacn)]2n+}n, bromide anions and one disordered water molecule of crystallization. The O atom of the water molecule occupies two unique crystallographic positions, one on a centre of symmetry, which is half occupied, and the other in a general position with one‐quarter occupancy. One of the tacn ligands also exhibits disorder. The formation of two different types of one‐dimensional structural motif within the same structure is a unique feature of this compound.  相似文献   

11.
The crystal structures of two crown‐ether‐coordinated caesium halogen salt hydrates, namely di‐μ‐bromido‐bis[aqua(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium(I)] dihydrate, [Cs2Br2(C12H24O6)2(H2O)2]·2H2O, (I), and poly[[diaquadi‐μ‐chlorido‐μ‐(1,4,7,10,13,16‐hexaoxacyclooctadecane)dicaesium(I)] dihydrate], {[Cs2Cl2(C12H24O6)(H2O)2]·2H2O}n, (II), are reported. In (I), all atoms are located on general positions. In (II), the Cs+ cation is located on a mirror plane perpendicular to the a axis, the chloride anion is located on a mirror plane perpendicular to the c axis and the crown‐ether ring is located around a special position with site symmetry 2/m, with two opposite O atoms exactly on the mirror plane perpendicular to the a axis; of one water molecule, only the O atom is located on a mirror plane perpendicular on the a axis, while the other water molecule is completely located on a mirror plane perpendicular to the c axis. Whereas in (I), hydrogen bonds between bromide ligands and water molecules lead to one‐dimensional chains running along the b axis, in (II) two‐dimensional sheets of water molecules and chloride ligands are formed which combine with the polymeric caesium–crown polymer to give a three‐dimensional network. Although both compounds have a similar composition, i.e. a Cs+ cation with a halogen, an 18‐crown‐6 ether and a water ligand, the crystal structures are rather different. On the other hand, it is remarkable that (I) is isomorphous with the already published iodide compound.  相似文献   

12.
The new ether‐bridged dipyridyl ligand 1,2‐bis[4‐(pyridin‐3‐yl)phenoxy]ethane (L) has been used to synthesize three isostructural centrosymmetric binuclear HgII macrocycles, namely bis{μ‐1,2‐bis[4‐(pyridin‐3‐yl)phenoxy]ethane‐κ2N:N′}bis[dichloridomercury(II)], [Hg2Cl4(C24H20N2O2)2], and the bromido, [Hg2Br4(C24H20N2O2)2], and iodido, [Hg2I4(C24H20N2O2)2], analogues. The Hg atoms adopt a highly distorted tetrahedral coordination environment consisting of two halides and two pyridine N‐donor atoms from two bridging ligands. In the solid state, the macrocycles form two‐dimensional sheets in the bc plane through noncovalent Hg...X and X...X (X = Cl, Br and I) interactions.  相似文献   

13.
catena‐Poly­[di­cyclo­hexyl­ammonium [tri­butyl­tin‐μ‐(4‐oxo‐4H‐pyran‐2,6‐di­carboxyl­ato‐O2:O6)]], (C12­H24N)­[Sn(C7­H2­O6)(C4H9)3], consists of 4‐oxo‐4H‐pyran‐2,6‐di­carboxyl­ato groups that axially link adjacent tri­butyl­tin units into a linear polyanionic chain. The ammonium counter‐ions surround the chain, and each cation forms a pair of hydrogen bonds to the double‐bond carbonyl O atoms of the same dianionic group. The chain propagates in a zigzag manner along the c axis of the monoclinic cell. In catena‐poly­[methyl­(phenyl)­ammonium [tri­butyl­tin‐μ‐(pyridine‐2,6‐di­carboxyl­ato‐O2:O6)]], (C7H10N)­[Sn(C7H3NO4)­(C4H9)3], the pyridine‐2,6‐di­carboxyl­ato groups also link the tri­butyl­tin groups into a chain, but the hydrogen‐bonded chain propagates linearly on the ac face of the monoclinic cell.  相似文献   

14.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

15.
In order to search for new anionic architectures and develop useful organic–inorganic hybrid materials in halometallate systems, two new crystalline organic–inorganic hybrid compounds have been prepared, i.e. catena‐poly[triethyl(2‐hydroxyethyl)azanium [[bromidocadmate(II)]‐di‐μ‐bromido]], {(C8H20NO)[CdBr3]}n, (1), and catena‐poly[triethyl(2‐hydroxyethyl)azanium [[bromidomercurate(II)]‐di‐μ‐bromido]], {(C8H20NO)[HgBr3]}n, (2), and the structures determined by X‐ray diffraction analysis. The compounds are isostructural, crystallizing in the space group P21/n. The metal centres are five‐coordinated by bromide anions, giving a slightly distorted trigonal–bipyramidal geometry. The crystal structures consist of one‐dimensional edge‐sharing chains of MBr5 trigonal bipyramids, between which triethylcholine counter‐cations are intercalated. O—H...Br hydrogen‐bonding interactions are present between the cations and anions.  相似文献   

16.
The title compound, (C5H6Br2N3)2[CuBr4], contains isolated substituted pyridinium cations and [CuBr4]2? anions. The di­amino­di­bromo­pyridinium ions are planar, while the CuII ions have a distorted compressed tetrahedral coordination with C2 symmetry. The two independent trans‐Br—Cu—Br angles are 128.9 (1) and 136.0 (1)°, with Cu—Br distances of 2.3939 (15) and 2.3790 (16) Å.  相似文献   

17.
In the crystals of the five title compounds, tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(ethanol‐O)dicopper(II)–ethanol (1/2), [Cu2(C6H11O2)4(C2H6O)2]·2C2H6O, (I), tetrakis(μ‐3,3‐dimethylbutyrato‐O:O′)bis(2‐methylpyridine‐N)di­copper(II), [Cu2(C6H11O2)4(C6H7N)2], (II), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (III), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(4‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (IV), and tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3,3‐dimethylbutyric acid‐O)dicopper(II), [Cu2(C6H11O2)4(C6H12O2)2], (V), the di­nuclear CuII complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The Cu?Cu separations are: (I) 2.602 (3) Å, (II) 2.666 (3) Å, (III) 2.640 (2) Å, (IV) 2.638 (4) Å and (V) 2.599 (1) Å.  相似文献   

18.
In the structural motifs of two isomorphous triclinic salts, (C5H6Br2N3)2[MBr4] (M = CdII and MnII), each [MBr4]2− anion interacts with eight surrounding 2,6‐diamino‐3,5‐dibromopyridinium cations through intermolecular C/N—H...Br and Br...Br interactions, leading to a three‐dimensional framework structure. The cations show a minor degree of π–π stacking, adding extra stability to the three‐dimensional architecture.  相似文献   

19.
A new 2,2′‐bi‐1H‐benzimidazole bridging organic ligand, namely 1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole, C26H20N6, L or (I), has been synthesized and used to create three new one‐dimensional coordination polymers, viz.catena‐poly[[dichloridomercury(II)]‐μ‐1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligand L crystallizes with two symmetry‐independent half‐molecules in the asymmetric unit and each L molecule resides on a crytallographic inversion centre. In structures (II)–(IV), the L ligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts an anti conformation in the solid state and forms a two‐dimensional network in the crystallographic bc plane viaπ–π and C—H...π interactions. The three HgII coordination complexes, (II)–(IV), have one‐dimensional zigzag chains composed of L and HgX2 (X = Cl, Br and I), and the HgII centres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others, i.e. a twist in the flexible bridging ligand.  相似文献   

20.
In the title dimeric compound, (C3H7N2S)2[Cu2(CHO2)6], each CuII atom has a square‐pyramidal coordination, with the nonbridging formate ion at the apical position. The complex anion is located on a crystallographic inversion centre, with a Cu...Cu separation of 2.6566 (4) Å. 2‐Amino‐2‐thiazolinium cations connect complex anions via hydrogen bonds to form a ribbon running along the a axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号