首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the crystal structures of the two imidazole derivatives 5‐chloro‐1,2‐dimethyl‐4‐nitro‐1H‐imidazole, C5H6ClN3O2, (I), and 2‐chloro‐1‐methyl‐4‐nitro‐1H‐imidazole, C4H4ClN3O2, (II), C—Cl...O halogen bonds are the principal specific interactions responsible for the crystal packing. Two different halogen‐bond modes are observed: in (I), there is one very short and directional C—Cl...O contact [Cl...O = 2.899 (1) Å], while in (II), the C—Cl group approaches two different O atoms from two different molecules, and the contacts are longer [3.285 (2) and 3.498 (2) Å] and less directional. In (I), relatively short C—H...O hydrogen bonds provide the secondary interactions for building the crystal structure; in (II), the C—H...O contacts are longer but there is a relatively short π–π contact between molecules related by a centre of symmetry. The molecule of (I) is almost planar, the plane of the nitro group making a dihedral angle of 6.97 (7)° with the mean plane of the imidazole ring. The molecule of (II) has crystallographically imposed mirror symmetry and the nitro group lies in the mirror plane.  相似文献   

2.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

3.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

4.
The 2,8‐di­hydroxy‐1,3,7,9‐tetra­methyl‐6,12‐di­hydro­di­pyrido[1,2‐a:1′,2′‐d]pyrazine­diyl­ium dication possesses 2/m symmetry and lies in the mirror plane together with a chloride anion and the water O atom. The dication also lies on an inversion centre, i.e. C16H20N2O22+·2Cl?·2H2O. Due to these symmetry constrictions the dication adopts an unexpected planar conformation. Molecules are linked by O—H?O and O—H?Cl hydrogen bonds to form chains, which are cross‐connected by C—H?Cl attractive interactions forming a complex three‐dimensional hydrogen‐bond network.  相似文献   

5.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

6.
Hydrogen bonds are considered a powerful organizing force in designing supramolecular architectures because they are directional, selective and reversible at room temperature. trans‐Dithiocyanatotetrakis(4‐vinylpyridine)nickel(II) is a popular host for the inclusion of small molecules and 2,3,5,6‐tetrafluoro‐1,4‐diiodobenzene (TFDIB) represents a strong halogen‐bond donor. These constituents cocrystallize in a 1:1 stoichiometry, [Ni(NCS)2(C7H7N)4]·C6F4I2, in the tetragonal space group I41/a. Both residues occupy special positions, i.e. the pseudo‐octahedral NiII complex is located on a twofold axis and the TFDIB molecule sits about a crystallographic centre of inversion. The components interact via a short S...I contact of 3.2891 (12) Å between the thiocyanate S atom of the host and the iodine substituent at the perhalogenated aromatic ring of the smaller guest molecule. This interaction meets the commonly accepted criteria for a halogen bond. Such halogen bonds to sulfur are significantly less common than to smaller electronegative atoms.  相似文献   

7.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

8.
The crystal structure of the title complex, trans‐dichloridotetrakis[1‐phenyl‐3‐(1H‐1,2,4‐triazol‐1‐yl‐κN4)propan‐1‐one]copper(II) hexahydrate, [CuCl2(C11H11N3O)4]·6H2O, is isomorphous with that of the corresponding nickel and cobalt compounds. The complex has crystallographic inversion symmetry with the CuII atom on an inversion centre. Each CuII atom is six‐coordinated by one N atom from each of the four 1‐phenyl‐3‐(1H‐1,2,4‐triazol‐1‐yl)propan‐1‐one ligands in the equatorial plane and by two chloride ligands in axial positions. The structure includes a centrosymmetric irregular up–up–down–down (uudd) water tetramer cluster and O—H...Cl hydrogen bonds. Intermolecular C—H...Cl hydrogen bonds exist between adjacent molecules, resulting in a three‐dimensional supramolecular network.  相似文献   

9.
In the crystal structure of the title two‐dimensional metal–organic polymeric complex, [Cd2Cl4(C8H14N2O4)(H2O)2]n, the asymmetric unit contains a crystallographically independent CdII cation, two chloride ligands, an aqua ligand and half a 2,2′‐(piperazine‐1,4‐diium‐1,4‐diyl)diacetate (H2PDA) ligand, the piperazine ring centroid of which is located on a crystallographic inversion centre. Each CdII centre is six‐coordinated in an octahedral environment by an O atom from an H2PDA ligand and an O atom from an aqua ligand in a trans disposition, and by four chloride ligands arranged in the plane perpendicular to the O—Cd—O axis. The complex forms a two‐dimensional layer polymer containing [CdCl2]n chains, which are interconnected into an extensive three‐dimensional hydrogen‐bonded network by C—H...O, C—H...Cl and O—H...O hydrogen bonds.  相似文献   

10.
The title compound, {[Cd3(C6H13N2)2Cl8]·2H2O}n, consists of pendant protonated cationic diamine ligands bonded to an anionic one‐dimensional coordination polymer chloridocadmate scaffold. Each coordination chain features two kinds of CdII centre, each with distorted octahedral coordination geometry. One CdII cation lies on a centre of inversion and is coordinated by six bridging chloride ligands, while the other is coordinated by four bridging chloride ligands, one terminal chloride ligand and a 1‐aza‐4‐azoniabicyclo[2.2.2]octane aza N atom. This gives a reversible corner‐sharing half‐cubic linear polymer that lies along the crystallographic a direction. The chains interact through hydrogen bonding with solvent water, with each water molecule accepting one N—H...O interaction from a cation and donating to two O—H...Cl interactions with anionic chains, thus linking three separate chains and completing the packing structure.  相似文献   

11.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

12.
13.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

14.
Fluorine substitutions on the furanose ring of nucleosides are known to strongly influence the conformational properties of oligonucleotides. In order to assess the effect of fluorine on the conformation of 3′‐deoxy‐3′‐fluoro‐5‐methyluridine (RTF), C10H13FN2O5, we studied its stereochemistry in the crystalline state using X‐ray crystallography. The compound crystallizes in the chiral orthorhombic space group P212121 and contains two symmetry‐independent molecules (A and B) in the asymmetric unit. The furanose ring in molecules A and B adopts conformations between envelope (2E, 2′‐endo, P = 162°) and twisted (2T3, 2′‐endo and 3′exo, P = 180°), with pseudorotation phase angles (P) of 164.3 and 170.2°, respectively. The maximum puckering amplitudes, νmax, for molecules A and B are 38.8 and 36.1°, respectively. In contrast, for 5‐methyluridine (RTOH), the value of P is 21.2°, which is between the 3E (3′‐endo, P = 18.0°) and 3T4 (3′‐endo and 4′‐exo, P = 36°) conformations. The value of νmax for RTOH is 41.29°. Molecules A and B of RTF generate respective helical assemblies across the crystallographic 21‐screw axis through classical N—H…O aand O—H…O hydrogen bonds supplemented by C—H…O contacts. Adjacent parallel helices of both molecules are linked to each other via O—H…O and O…π interactions.  相似文献   

15.
The crystal structures of four new chiral [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines are described, namely, ethyl 5′‐benzoyl‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O3S, ethyl 5′‐(4‐methoxybenzoyl)‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C20H24N4O4S, ethyl 6,6‐dimethyl‐5‐(4‐methylbenzoyl)‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C17H20N4O3S, and ethyl 5‐benzoyl‐6‐(4‐methoxyphenyl)‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C21H20N4O4S. The crystallographic data and cell activities of these four compounds and of the structures of three previously reported similar compounds, namely, ethyl 5′‐(4‐methylbenzoyl)‐5′H,7′H‐spiro[cyclopentane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O3S, ethyl 5′‐(4‐methoxybenzoyl)‐5′H,7′H‐spiro[cyclopentane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O4S, and ethyl 6‐methyl‐5‐(4‐methylbenzoyl)‐6‐phenyl‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C22H22N4O3S, are contrasted and compared. For both crystallization and an MTT assay, racemic mixtures of the corresponding [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines were used. The main manner of molecular packing in these compounds is the organization of either enantiomeric pairs or dimers. In both cases, the formation of two three‐centre hydrogen bonds can be detected resulting from intramolecular N—H…O and intermolecular N—H…O or N—H…N interactions. Molecules of different enantiomeric forms can also form chains through N—H…O hydrogen bonds or form layers between which only weak hydrophobic contacts exist. Unlike other [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines, ethyl 5′‐benzoyl‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate contains molecules of only the (R)‐enantiomer; moreover, the N—H group does not participate in any significant intermolecular interactions. Molecular mechanics methods (force field OPLS3e) and the DFT B3LYP/6‐31G+(d,p) method show that the compound forming enantiomeric pairs via weak N—H…N hydrogen bonds is subject to greater distortion of the geometry under the influence of the intermolecular interactions in the crystal. For intramolecular N—H…O and S…O interactions, an analysis of the noncovalent interactions (NCIs) was carried out. The cellular activities of the compounds were tested by evaluating their antiproliferative effect against two normal human cell lines and two cancer cell lines in terms of half‐maximum inhibitory concentration (IC50). Some derivatives have been found to be very effective in inhibiting the growth of Hela cells at nanomolar and submicromolar concentrations with minimal cytotoxicity in relation to normal cells.  相似文献   

16.
Racemic 2,4(6)‐di‐O‐benzoyl‐myo‐inositol 1,3,5‐orthoformate, C21H18O8, (1) , shows a very efficient intermolecular benzoyl‐group migration reaction in its crystals. However, the presence of 4,4′‐bipyridine molecules in its cocrystal, C21H18O8·C10H8N2, (1)·BP , inhibits the intermolecular benzoyl‐group transfer reaction. In (1) , molecules are assembled around the crystallographic twofold screw axis (b axis) to form a helical self‐assembly through conventional O—H...O hydrogen‐bonding interactions. This helical association places the reactive C6‐O‐benzoyl group (electrophile, El) and the C4‐hydroxy group (nucleophile, Nu) in proximity, with a preorganized El...Nu geometry favourable for the acyl transfer reaction. In the cocrystal (1)·BP , the dibenzoate and bipyridine molecules are arranged alternately through O—H...N interactions. The presence of the bipyridine molecules perturbs the regular helical assembly of the dibenzoate molecules and thus restricts the solid‐state reactivity. Hence, unlike the parent dibenzoate crystals, the cocrystals do not exhibit benzoyl‐transfer reactions. This approach is useful for increasing the stability of small molecules in the crystalline state and could find application in the design of functional solids.  相似文献   

17.
In 2,4,6,8‐tetrakis(4‐chlorophenyl)‐2,4,6,8‐tetraazabicyclo[3.3.0]octane, C28H22Cl4N4, the imidazolidine rings adopt envelope conformations, which are favoured by two equal endo anomeric effects. The molecule lies on a crystallographic twofold axis and molecules are linked into a three‐dimensional framework via two C—H...Cl hydrogen bonds. In 2,4,6,8‐tetrakis(4‐methoxyphenyl)‐2,4,6,8‐tetraazabicyclo[3.3.0]octane, C32H34N4O4, one of the methyl groups is disordered over two sets of sites and the same methyl group participates in an intermolecular C—H...O hydrogen bond, which in turn causes a considerable deviation from the preferred conformation. There are two unequal inter‐ring anomeric effects in the N—C—N groups. Molecules are linked into corrugated sheets by one C—H...π hydrogen bond and two independent C—H...O hydrogen bonds involving methoxy groups.  相似文献   

18.
19.
A new 2,2′‐bi‐1H‐benzimidazole bridging organic ligand, namely 1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole, C26H20N6, L or (I), has been synthesized and used to create three new one‐dimensional coordination polymers, viz.catena‐poly[[dichloridomercury(II)]‐μ‐1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligand L crystallizes with two symmetry‐independent half‐molecules in the asymmetric unit and each L molecule resides on a crytallographic inversion centre. In structures (II)–(IV), the L ligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts an anti conformation in the solid state and forms a two‐dimensional network in the crystallographic bc plane viaπ–π and C—H...π interactions. The three HgII coordination complexes, (II)–(IV), have one‐dimensional zigzag chains composed of L and HgX2 (X = Cl, Br and I), and the HgII centres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others, i.e. a twist in the flexible bridging ligand.  相似文献   

20.
Poly[bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) γ‐octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) α‐dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric γ‐type [Mo8O26]4− anion, which produces a one‐dimensional polymeric chain by corner‐sharing, one cation and one water molecule. Three‐centre bonding with 3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)–3.146 (4) Å], generates two‐dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4− anions into a three‐dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)–2.999 (6) Å], while anion/aqua interactions occur preferentially viaμ2‐O sites [O...O = 2.910 (6)–3.151 (6) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号