首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The conformations of organic compounds determined in the solid state are important because they can be compared with those in solution and/or from theoretical calculations. In this work, the crystal and molecular structures of four closely related diesters, namely methyl isopropyl 2‐(triphenylphosphoranylidene)malonate, C25H25O4P, ethyl isopropyl 2‐(triphenylphosphoranylidene)malonate, C26H27O4P, methyl tert‐butyl 2‐(triphenylphosphoranylidene)malonate, C26H27O4P, and ethyl tert‐butyl 2‐(triphenylphosphoranylidene)malonate, C27H29O4P, have been analysed as a preliminary step for such comparative studies. As a result of extensive electronic delocalization, as well as intra‐ and intermolecular interactions, a remarkably similar pattern of preferred conformations in the crystal structures results, viz. a synanti conformation of the acyl groups with respect to the P atom, with the bulkier alkoxy groups oriented towards the P atom. The crystal structures are controlled by nonconventional hydrogen‐bonding and intramolecular interactions between cationoid P and acyl and alkoxy O atoms in syn positions.  相似文献   

2.
The title ylides, 3‐(triphenyl­phospho­ranyl­idene)pentane‐2,4‐dione, C23H21O2P, (I), and diethyl 2‐(triphenyl­phospho­ranyl­idene)malonate, C25H25O4P, (II), differ in the conformations adopted by their extended ylide moieties. In (I), one carbonyl O atom is syn and the other is anti with respect to the P atom, the ylide group is nearly planar, with a maximum P—C—(C=O) angle of 18.2 (2)°, and the P—C, C—C and C=O bond lengths are consistent with electronic delocalization involving the O atoms. In (II), both carbonyl O atoms are anti and the ester groups are twisted out of the plane of the near trigonal ylide C atom, reducing delocalization, the largest P—C—(C=O) angle being 30.2 (2)°.  相似文献   

3.
The crystal structures of four alkyl 3-oxo-2-(tri­phenyl­phospho­ranyl­idene)­butyrates, where the alkyl group is methyl (C23H21O3P·0.5C6H6), (II), ethyl (C24H23O3P), (III), isopropyl (C25H25O3P), (IV), or tert-butyl (C26H27O3P), (V), show all of them to have the same conformation. They present a tetrahedral P atom and an sp2 yl­idic C atom, with the carbonyl groups adopting anti conformations with respect to the keto groups located close to the P atom. P—C—C—O torsion angles, bond lengths and angles indicate an effective electronic delocalization toward the keto groups. In each case, one H atom of the alkoxy group is close to one of the phenyl rings. These preferred conformations are evaluated as the result of attractive and repulsive intramolecular interactions.  相似文献   

4.
Hydrogen bonding and crystal packing play major roles in determining the conformations of ethyl methyl 2‐(triphenyl­phospho­ranyl­idene)malonate, Ph3P=C(CO2CH3)CO2CH2CH3 or C24H23O4P, (I), and dimethyl 2‐(triphenyl­phosphor­anyl­idene)malonate, Ph3P=C(CO2CH3)2 or C23H21O4P, (II). In (I), the acyl O atom of the ethyl ester group is anti to the P atom, while the O atom of the methyl ester group is syn. In (II), the dimethyl diester is a 1:1 mixture of antianti and synanti conformers.  相似文献   

5.
The structures of the novel triazolobenzothiazines 2,4‐dihydro‐1H‐benzo[b][1,2,4]triazolo[4,3‐d][1,4]thiazin‐1‐one (IDPH‐791), C9H7N3OS, (I), a potential muscle relaxant, its benzoyl derivative, 2‐(2‐oxo‐2‐phenylethyl)‐2,4‐dihydro‐1H‐benzo[b][1,2,4]triazolo[4,3‐d][1,4]thiazin‐1‐one, C20H17N3O4S, (II), and the β‐keto ester derivative, ethyl 3‐oxo‐2‐(1‐oxo‐2,4‐dihydro‐1H‐benzo[b][1,2,4]triazolo[4,3‐d][1,4]thiazin‐2‐yl)‐3‐phenylpropanoate, C17H13N3O2S, (III), are the first examples of benzothiazine‐fused triazoles in the crystallographic literature. The heterocyclic thiazine rings in all three structures adopt a distorted half‐chair conformation. Compound (III) exists in the trans‐β‐diketo form. Other than N—H...O hydrogen bonds in (I) forming dimers, no formal intermolecular hydrogen bonds are involved in the crystal packing of any of the three structures, which is dominated by C—H...O/N and π–π stacking interactions.  相似文献   

6.
The molecules of ethyl 2‐methoxy‐6‐[(triphenylphosphoranylidene)amino]nicotinate, C27H25N2O3P, (I), and ethyl 2‐methylsulfanyl‐6‐[(triphenylphosphoranylidene)amino]nicotinate, C27H25N2O2PS, (II), have almost identical bond lengths and molecular conformations, and both show evidence for polarized electronic structures. However, the crystal structures, as illustrated by the weak hydrogen bonds linking the molecules, are significantly different. The significance of this study lies in the observation that two compounds which are almost identical in constitution, configuration and conformation nonetheless adopt different crystal structures.  相似文献   

7.
The X‐ray crystal structure analyses of 3β‐hydroxy‐11‐oxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester ethanol solvate, C31H48O4·C2H6O, (I), and 3,11‐dioxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester, C31H46O4, (II), are described. These two compounds differ only in the structure of ring A. In (I), ring A has a chair conformation, while in (II), it has a twisted boat conformation. In both compounds, ring C has a slightly distorted sofa conformation, rings B, D and E are in chair conformations, and rings D and E are trans‐fused. The asymmetric unit of (I) contains one mol­ecule of ethanol linked by hydrogen bonds with two different mol­ecules of (I).  相似文献   

8.
The bis‐thionooxalamic acid esters trans‐(±)‐diethyl N,N′‐(cyclohexane‐1,2‐diyl)bis(2‐thiooxamate), C14H22N2O4S2, and (±)‐N,N′‐diethyl (1,2‐diphenylethane‐1,2‐diyl)bis(2‐thiooxamate), C22H24N2O4S2, both consist of conformationally flexible molecules which adopt similar conformations with approximate C2 rotational symmetry. The thioamide and ester parts of the thiooxamate group are significantly twisted along the central C—C bond, with the S=C—C=O torsion angles in the range 30.94 (19)–44.77 (19)°. The twisted scis conformation of the thionooxamide groups facilitates assembly of molecules into a one‐dimensional polymeric structure via intermolecular three‐center C=S...NH...O=C hydrogen bonds and C—H...O interactions formed between molecules of the opposite chirality.  相似文献   

9.
The revived interest in halogen bonding as a tool in pharmaceutical cocrystals and drug design has indicated that cyano–halogen interactions could play an important role. The crystal structures of four closely related δ‐keto esters, which differ only in the substitution at a single C atom (by H, OMe, Cl and Br), are compared, namely ethyl 2‐cyano‐5‐oxo‐5‐phenyl‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H22N2O3, (1), ethyl 2‐cyano‐5‐(4‐methoxyphenyl)‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C20H24N2O4, (2), ethyl 5‐(4‐chlorophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21ClN2O3, (3), and the previously published ethyl 5‐(4‐bromophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21BrN2O3, (4) [Maurya, Vasudev & Gupta (2013). RSC Adv. 3 , 12955–12962]. The molecular conformations are very similar, while there are differences in the molecular assemblies. Intermolecular C—H...O hydrogen bonds are found to be the primary interactions in the crystal packing and are present in all four structures. The halogenated derivatives have additional aromatic–aromatic interactions and cyano–halogen interactions, further stabilizing the molecular packing. A database analysis of cyano–halogen interactions using the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53 , 662–671] revealed that about 13% of the organic molecular crystals containing both cyano and halogen groups have cyano–halogen interactions in their packing. Three geometric parameters for the C—X...N[triple‐bond]C interaction (X = F, Cl, Br or I), viz. the N...X distance and the C—X...N and C—N...X angles, were analysed. The results indicate that all the short cyano–halogen contacts in the CSD can be classified as halogen bonds, which are directional noncovalent interactions.  相似文献   

10.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

11.
The title compound, C26H22N2O4, crystallizes in an anti‐C=O orientation, with the two N‐substituted benzene rings in different conformations relative to the naphthalene ring. These conformations allow two strong N—H⋯O hydrogen bonds and one C—H⋯π inter­action to generate mol­ecular chains in the cell.  相似文献   

12.
The structures of five metal complexes containing the 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetraaquaberyllium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three‐dimensional hydrogen‐bonded framework structure. Each of the ions in hydrazinium(2+) diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen‐bonded sheets which are linked into a three‐dimensional framework by the cations. In bis(μ‐4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three‐dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetraaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P; the metal ions and the organic ligands form a one‐dimensional coordination polymer, and the polymer chains are linked into a three‐dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three‐dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is interwoven with a complex three‐dimensional framework built from O—H...O hydrogen bonds.  相似文献   

13.
Different tautomeric and zwitterionic forms of chelidamic acid (4‐hydroxypyridine‐2,6‐dicarboxylic acid) are present in the crystal structures of chelidamic acid methanol monosolvate, C7H5NO5·CH4O, (Ia), dimethylammonium chelidamate (dimethylammonium 6‐carboxy‐4‐hydroxypyridine‐2‐carboxylate), C2H8N+·C7H4NO5, (Ib), and chelidamic acid dimethyl sulfoxide monosolvate, C7H5NO5·C2H6OS, (Ic). While the zwitterionic pyridinium carboxylate in (Ia) can be explained from the pKa values, a (partially) deprotonated hydroxy group in the presence of a neutral carboxy group, as observed in (Ib) and (Ic), is unexpected. In (Ib), there are two formula units in the asymmetric unit with the chelidamic acid entities connected by a symmetric O—H...O hydrogen bond. Also, crystals of chelidamic acid dimethyl ester (dimethyl 4‐hydroxypyridine‐2,6‐dicarboxylate) were obtained as a monohydrate, C9H9NO5·H2O, (IIa), and as a solvent‐free modification, in which both ester molecules adopt the hydroxypyridine form. In (IIa), the solvent water molecule stabilizes the synperiplanar conformation of both carbonyl O atoms with respect to the pyridine N atom by two O—H...O hydrogen bonds, whereas an antiperiplanar arrangement is observed in the water‐free structure. A database study and ab initio energy calculations help to compare the stabilities of the various ester conformations.  相似文献   

14.
The crystal structures of triethyl­ammonium adenosine cyclic 2′,3′‐phosphate {systematic name: triethyl­ammonium 4‐(6‐amino­purin‐9‐yl)‐6‐hydroxy­methyl‐2‐oxido‐2‐oxoperhydro­furano[3,4‐c][1,3,2]dioxaphosphole}, Et3NH(2′,3′‐cAMP) or C6H16N+·C10H11N5O6P, (I), and guanosine cyclic 2′,3′‐phosphate monohydrate {systematic name: triethyl­ammonium 6‐hydroxy­methyl‐2‐oxido‐2‐oxo‐4‐(6‐oxo‐1,6‐dihydro­purin‐9‐yl)perhydro­furano[3,4‐c][1,3,2]dioxaphosphole monohydrate}, [Et3NH(2′,3′‐cGMP)]·H2O or C6H16N+·C10H11N5O7P·H2O, (II), reveal different nucleobase orientations, viz. anti in (I) and syn in (II). These are stabilized by different inter‐ and intra­molecular hydrogen bonds. The structures also exhibit different ribose ring puckering [4E in (I) and 3T2 in (II)] and slightly different 1,3,2‐dioxaphospho­lane ring conformations, viz. envelope in (I) and puckered in (II). Infinite ribbons of 2′,3′‐cAMP and helical chains of 2′,3′‐cGMP ions, both formed by O—H⋯O, N—H⋯X and C—H⋯X (X = O or N) hydrogen‐bond contacts, characterize (I) and (II), respectively.  相似文献   

15.
The asymmetric hydrogenation of aromatic γ‐ and δ‐keto esters into optically active hydroxy esters or diols under the catalysis of a novel DIPSkewphos/3‐AMIQ–RuII complex was studied. Under the optimized conditions (8 atm H2 , Ru complex/t‐C4H9OK=1:3.5, 25 °C) the γ‐ and δ‐hydroxy esters (including γ‐lactones) were obtained quantitatively with 97–99 % ee. When the reaction was conducted under somewhat harsh conditions (20 atm H2 , [t‐C4H9OK]=50 mm , 40 °C), the 1,4‐ and 1,5‐diols were obtained predominantly with 95–99 % ee. The reactivity of the ester group was notably dependent on the length of the carbon spacer between the two carbonyl moieties of the substrate. The reaction of β‐ and ?‐keto esters selectively afforded the hydroxy esters regardless of the reaction conditions. This catalyst system was applied to the enantioselective and regioselective (for one of the two ester groups) hydrogenation of a γ‐?‐diketo diester into a trihydroxy ester.  相似文献   

16.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

17.
Isostructurality is more likely to occur in multicomponent systems. In this context, three closely related solvates were crystallized, namely, benzene (C27H21BrO6·C6H6), toluene (C27H21BrO6·C7H8) and xylene (C27H21BrO6·C8H10) with methyl 3a‐acetyl‐3‐(4‐bromophenyl)‐4‐oxo‐1‐phenyl‐3,3a,4,9b‐tetrahydro‐1H‐furo[3,4‐c ]chromene‐1‐carboxylate, and their crystal structures determined. All three structures belong to the same space group (P ) and display similar unit‐cell dimensions and conformations, as well as isostructural crystal packings. The isostructurality is confirmed by unit‐cell and isostructural similarity indices. In each solvate, weak C—H…O and C—H…π interactions extend the molecules into two‐dimensional networks, which are further linked by C—H…Br and Br…Br interactions into three‐dimensional networks. The conformation of the core molecule is predominantly responsible for governing the isostructurality.  相似文献   

18.
The two title 16,17‐secoestrone derivatives, 3‐methoxy‐17‐oxo‐17‐phenyl‐16,17‐secoestra‐1,3,5(10)‐triene‐16‐nitrile, C25H27NO2, (I) (17‐oxo substituent), and 17‐hydroxy‐3‐methoxy‐17‐phenyl‐16,17‐secoestra‐1,3,5(10)‐triene‐16‐nitrile, C25H29NO2, (II) (17‐hydroxy substituent), have quite different conformations in the solid state. These conformational differences can be minimized by molecular mechanics calculations. Thus, the remarkable difference in the biological activity of the two compounds, e.g. the strong oestrogenic characteristics of (I) and the moderate antioestrogenic action of (II), must be caused by the difference in substitution at C17. In (II), the mol­ecules are linked by O—H?N hydrogen bonds, forming spirals along the b direction.  相似文献   

19.
In O‐ethyl N‐benzoylthiocarbamate, C10H11NO2S, the molecules are linked into sheets by a combination of two‐centre N—H...O and C—H...S hydrogen bonds and a three‐centre C—H...(O,S) hydrogen bond. A combination of two‐centre N—H...O and C—H...O hydrogen bonds links the molecules of O‐ethyl N‐(4‐methylbenzoyl)thiocarbamate, C11H13NO2S, into chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. In O,S‐diethyl N‐(4‐methylbenzoyl)imidothiocarbonate, C13H17NO2S, pairs of molecules are linked into centrosymmetric dimers by pairs of symmetry‐related C—H...π(arene) hydrogen bonds, while the molecules of O,S‐diethyl N‐(4‐chlorobenzoyl)imidothiocarbonate, C12H14ClNO2S, are linked by a single C—H...O hydrogen bond into simple chains, pairs of which are linked by an aromatic π–π stacking interaction to form a ladder‐type structure.  相似文献   

20.
The title compounds, rac‐(1′R,2R)‐tert‐butyl 2‐(1′‐hydroxyethyl)‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C17H20N2O6, (I), rac‐(1′S,2R)‐tert‐butyl 2‐[1′‐hydroxy‐3′‐(methoxycarbonyl)propyl]‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C20H24N2O8, (II), and rac‐(1′S,2R)‐tert‐butyl 2‐(4′‐bromo‐1′‐hydroxybutyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C13H20BrNO4, (III), are 5‐hydroxyalkyl derivatives of tert‐butyl 2‐oxo‐2,5‐dihydropyrrole‐1‐carboxylate. In all three compounds, the tert‐butoxycarbonyl (Boc) unit is orientated in the same manner with respect to the mean plane through the 2‐oxo‐2,5‐dihydro‐1H‐pyrrole ring. The hydroxyl substituent at one of the newly created chiral centres, which have relative R,R stereochemistry, is trans with respect to the oxo group of the pyrrole ring in (I), synthesized using acetaldehyde. When a larger aldehyde was used, as in compounds (II) and (III), the hydroxyl substituent was found to be cis with respect to the oxo group of the pyrrole ring. Here, the relative stereochemistry of the newly created chiral centres is R,S. In compound (I), O—H...O hydrogen bonding leads to an interesting hexagonal arrangement of symmetry‐related molecules. In (II) and (III), the hydroxyl groups are involved in bifurcated O—H...O hydrogen bonds, and centrosymmetric hydrogen‐bonded dimers are formed. The Mukaiyama crossed‐aldol‐type reaction was successful when using the 2‐nitrophenyl‐substituted hydroxypyrrole, or the unsubstituted hydroxypyrrole, and boron trifluoride diethyl ether as catalyst. The synthetic procedure leads to a syn configuration of the two newly created chiral centres in all three compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号