首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
稀土Ce掺杂对ZnO结构和光催化性能的影响   总被引:3,自引:0,他引:3  
采用共沉淀-焙烧法合成了一系列不同含量的稀土Ce掺杂的ZnO光催化剂. 利用傅里叶变换红外(FT-IR)光谱、粉末X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、光致发光(PL)谱等技术对所制备的光催化剂进行了系列表征. 以酸性橙II脱色降解为模型反应, 考察了掺杂不同含量的铈及不同焙烧温度对ZnO的物理结构和光催化脱色性能的影响. 结果表明: 掺入质量分数(w)为2%的铈可以明显改善氧化锌表面状态, 有利于产生更多的表面羟基; 同时可以抑制光生电子与光生空穴(e-/h+)的复合, 显著提高光催化脱色活性和光催化稳定性; 焙烧温度对光催化剂的晶体结构、表面性能和光催化活性产生较大影响, 500 °C的焙烧处理使样品的结晶度较高, 同时催化剂颗粒粒径较细, 表面具有丰富的羟基. 但过高的焙烧温度(600-800 °C)将导致催化剂的物理结构发生恶化, 降低光催化性能.  相似文献   

2.
ZnO nanoparticles (NPs) with tunable morphologies were synthesized by a hybrid electrochemical–thermal method at different calcination temperatures without the use of any surfactant or template. The NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, dynamic light scattering, thermogravimetry–differential thermal analysis, scanning electron microscope and N2 gas adsorption–desorption studies. The FT-IR spectra of ZnO NPs showed a band at 450 cm?1, a characteristic of ZnO, which remained fairly unchanged at calcination temperatures even above 300 °C, indicating complete conversion of the precursor to ZnO. The products were thermally stable above 300 °C. The ZnO NPs were present in a hexagonal wurtzite phase and the crystallinity of ZnO increased with an increasing calcination temperature. The ZnO NPs calcined at lower temperature were mesoporous in nature. The surface areas of ZnO NPs calcined at 300 and 400 °C were 51.10 and 40.60 m2 g?1, respectively, which are significantly larger than commercial ZnO nanopowder. Surface diffusion has been found to be the key mechanism of sintering during heating from 300 to 700 °C with the activation energy of sintering as 8.33 kJ mol?1. The photocatalytic activity of ZnO NPs calcined at different temperatures evaluated by photocatalytic degradation of methylene blue under sunlight showed strong dependence on the surface area of ZnO NPs. The ZnO NPs with high surface area showed enhanced photocatalytic activity.  相似文献   

3.
以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维.为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO复合材料.利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征.制备的SnO2/ZnO复合材料是由纳米量级的小颗粒构成的分级结构材料.ZnO含量不同,对应的SnO2/ZnO复合材料结构不同.表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用.将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件.讨论了SnO2/ZnO复合材料气敏元件的敏感机理.同时针对Sn:Zn摩尔比为1:1时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结.  相似文献   

4.
采用静电纺丝技术及煅烧法制备了氧化锌纳米纤维, 然后采用水热法将银纳米颗粒负载到了氧化锌纳米纤维表面. 利用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 能量色散X射线光谱(EDX)、 扫描电子显微镜(SEM)及透射电子显微镜(TEM)等技术对合成的Ag/ZnO纳米纤维的结构和组成进行了表征. SEM结果表明, 直径在5~100 nm之间的银纳米颗粒附着在直径在80~330 nm之间的氧化锌纤维表面形成了异质结构. 以常见的有机污染物甲基橙、 亚甲基蓝和罗丹明B等为降解底物, 对Ag/ZnO纳米纤维的光催化性能进行了表征. 结果表明, 负载银纳米颗粒后, 复合催化剂的光催化性能明显提高.  相似文献   

5.
冯秋霞  于鹏  王兢  李晓干 《物理化学学报》2015,31(12):2405-2412
采用静电纺丝法成功制备了Y掺杂的ZnO纳米纤维.并通过X射线衍射(XRD),扫描电子显微镜(SEM),能量色散X射线(EDX),透射电子显微镜(TEM)以及热重差热分析(TG-DTA)等手段对样品的结构和形貌进行了表征分析.同时用纯的ZnO和Y掺杂的ZnO纳米纤维制备了传感器,对浓度为(1-200)×10-6 (体积分数)丙酮的气敏特性进行了测试分析.测试结果表明,可以通过简单控制纳米纤维中Y的含量,来微调该传感器的气敏特性.同时也发现通过Y掺杂, ZnO纳米纤维对丙酮的气敏特性有所改善,表现出很高的响应.纯ZnO和Y掺杂ZnO制成的传感器对几种潜在干扰气体表现出良好的选择性,比如氨气、苯、甲醛、甲苯以及甲醇.本文最后也讨论了该传感器的气敏作用机理.  相似文献   

6.
用静电纺丝法制备了In(NO3)3/聚乙烯吡咯烷酮(PVP)纺丝前驱物, 然后分别在500、600、700℃时烧结得到三种In2O3 纳米纤维. 通过X 射线衍射(XRD)仪、热重差热分析(TG/DTA)、场发射扫描式电子显微镜(FE-SEM)表征结果得知, 500℃时In2O3的晶相已经形成, 且粒径为最小, 约为24 nm, 纳米纤维呈介孔结构.将三种烧结温度的In2O3纤维制作成气敏元件, 测试对比了三种元件对甲醛气体的敏感特性, 结果表明, 500℃烧结得到的In2O3纳米纤维在工作温度为240℃时响应最好, 对浓度为10×10-6 (体积分数, φ)甲醛的响应为7.用静电纺丝法合成了CdO 纳米颗粒, 通过XRD、SEM 表征得知CdO 呈粒径约为68 nm 的颗粒. 将In2O3和CdO以不同摩尔比(1:1, 10:1, 20:1)复合, 对比测试了纯In2O3及三种In2O3/CdO复合材料对应的气敏元件对甲醛的气敏特性, 测试结果表明当In2O3纳米纤维与CdO纳米颗粒以摩尔比10:1 复合时, 元件的工作温度较低(200℃), 且对甲醛表现出最佳的气敏特性, 对浓度为10×10-6甲醛的响应为13.6, 响应/恢复时间为140 s/32s. 最后对不同摩尔比复合的In2O3/CdO对甲醛的气敏机理进行了初步分析.  相似文献   

7.
采用电纺丝技术结合高温煅烧制备了铜掺杂氧化锌复合纳米纤维,并通过XRD,XPS,SEM和TEM等手段对材料进行表征.将所得材料作为敏感层构筑了气体传感器,器件对乙醇蒸气具有很好的传感特性,特别是当Cu/Zn摩尔比为1∶60时,由于Cu组分的活化作用,所得传感器不仅具有高灵敏度、快速响应恢复(2 s/7 s)特性及优良的稳定性,而且在5~104μg/g超大乙醇蒸气浓度范围内都能保持良好的线性关系(R2=0.99),这不仅有利于乙醇实际检测,而且对宽响应范围及高灵敏传感器的发展具有重要意义.  相似文献   

8.
Continuous NiTiO3 nanofibers have been successfully synthesized by a sol–gel assisted electrospinning method followed by calcination at 600 °C in air. These nanofibers were characterized for the morphological, structural and optical properties by scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and UV–visible (UV–vis) diffuse reflectance spectroscopy (DRS). SEM results reveal that the obtained NiTiO3 nanofibers are 175 nm in diameter and several micrometers in length after annealing at 600 °C. The XRD analysis shows that the nanofibers possess highly crystalline structure with no impurity phase. In contrast, the NiTiO3 nanoparticles synthesized at the identical conditions by a sol–gel route have impurities including TiO2 and NiO. Moreover, the electrospun NiTiO3 nanofibers are endowed with an obvious optical absorbance in the visible range, demonstrating they have visible light photoresponse.  相似文献   

9.
《中国化学快报》2020,31(8):2071-2076
Semiconducting metal oxides have been considered as effective approach for designing high-performance chemical sensing materials. In this paper, a kind of metal-organic frameworks ZIF-8 was used as sacrificed template to prepare porous ZnO hollow nanocubes for the application in gas sensing. It is found that changing calcination temperature and solvent can greatly influence the morphology of the material, which finally affects the gas sensing performance. Acetylene-sensing properties of the sensors were investigated in detail. It can be clearly seen that the material used methanol as reaction solvent with the decomposition at 350 °C for 2 h (ZnO-350-M) showed the optimal formaldehyde-sensing behaviors compared with other materials prepared in this experiment. The dynamic transients of the ZnO-350-M-based sensors demonstrated a high response value (about 10), fast response and recovery rate (4 s and 4 s, respectively) and good selectivity towards 100 ppm (part per million) formaldehyde as well as a low detectable limit (1 ppm). As exemplified for the sensing investigation towards formaldehyde, the porous ZnO hollow nanocubes showed a significantly improved chemical sensitivity due to the highly synergistic effects from the well exposed surfaces, defect states and the robust ZnO.  相似文献   

10.
采用共沉淀-焙烧法合成了一系列不同含量的稀土Ce掺杂的ZnO光催化剂. 利用傅里叶变换红外(FT-IR)光谱、粉末X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、光致发光(PL)谱等技术对所制备的光催化剂进行了系列表征. 以酸性橙II脱色降解为模型反应, 考察了掺杂不同含量的铈及不同焙烧温度对ZnO的物理结构和光催化脱色性能的影响. 结果表明: 掺入质量分数(w)为2%的铈可以明显改善氧化锌表面状态, 有利于产生更多的表面羟基; 同时可以抑制光生电子与光生空穴(e-/h+)的复合, 显著提高光催化脱色活性和光催化稳定性; 焙烧温度对光催化剂的晶体结构、表面性能和光催化活性产生较大影响, 500 °C的焙烧处理使样品的结晶度较高, 同时催化剂颗粒粒径较细, 表面具有丰富的羟基. 但过高的焙烧温度(600-800 °C)将导致催化剂的物理结构发生恶化, 降低光催化性能.  相似文献   

11.
采用无卤法制备晶相可控的ZrO2纳米线. 通过静电纺丝法制备聚乙烯吡咯烷酮(PVP)与Zr(NO3)4的复合纤维; 再通过煅烧法在除去聚合物模板的同时制备ZrO2纳米线. 采用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 傅里叶变换红外光谱(FTIR)仪及热重差热联用热分析仪(DSC-TGA)对材料的晶相结构、 形貌及热稳定性进行表征. 通过改变煅烧温度, 可以实现ZrO2纳米材料形貌及晶相组成的调控.  相似文献   

12.
In this study, we have developed a simple and efficient single-nozzle electrospinning strategy involving the phase separation of polystyrene and poly(vinylpyrrolidone) to construct cable-like core–shell mesoporous SnO2 nanofibers. Compared with traditional multi-axial electrospinning approaches to the synthesis of core–shell nanofibers, the single-nozzle electrospinning process requires no complex multi-axial electrospinning setups or post-treatments, just drying and annealing after electrospinning. The obtained SnO2 nanofibers show promise as a sensing material for formaldehyde at low concentrations, the detection limit being about 1 ppm. Furthermore, the nanofibers exhibited good cycling stability and selectivity, with response and recovery times toward 10 ppm formaldehyde being approximately 18 and 196 s, respectively, at an operating temperature of 195 °C.  相似文献   

13.
In this research work, crystalline structure, phase transformation, morphology and mean size of titanium dioxide (TiO2) electrospun nanofibers have been tailored by loading with 2.5, 5.0 and 7.5 wt.% of silver (Ag) which was followed by calcination. The as prepared non woven mats of nanofibers were calcinated at 500 °C to allow the reaction moieties to leave the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading and calcination on the transformation of microstructure of these electrospun nanofibers have been characterized by XRD, FESEM, FT-IR and Raman spectroscopy (RS). The mean diameter of Ag loaded nanofibers has been found to decrease upon calcination which was estimated to 70 nm whereas length was in the order of mm range. XRD and RS results have strongly supported the transformation of crystalline phase from rutile (A) to anatase (R) above 2.5 wt.% of Ag loading in TiO2 after calcination. The roughness on the outer surfaces of these nanofibers has been observed to increase with the Ag loading consequent to calcination, which has been attributed to the formation Ag nanoparticles that were found adsorbed at the surfaces. An interesting finding of this study is the existence of 1D nanofibers’ structure even at higher (7.5 wt.%) Ag loading, as observed by the SEM micrographs.  相似文献   

14.
W-doped TiO(2) nanofibers with various compositions (W/Ti: 2-8%) were fabricated by the electrospinning method from respective precursor solutions containing tungsten(V) pentaethoxide, titanium tetraisopropoxide (TTIP), and polyvinylpyrrolidone (PVP), followed with calcination at 550 °C. Morphological and structural characteristics of these nanofibers were studied with SEM, XRD and XPS. W-doping inhibited the crystal growth and anatase-to-rutile transformation of TiO(2) nanofibers. W-doped TiO(2) nanofiber mats showed good photocatalytic oxidation abilities for acetone. Obvious color change from white to blue of mats during the photocatalysis process can be detected by naked eyes, which provides a good way in detection of pollutants in indoor air, especially for the volatile organic compounds (VOCs).  相似文献   

15.
This paper describes the fabrication of barium strontium titanate (Ba0.6Sr0.4TiO3 or BST) nanofibers by electrospinning method using a solution that contained poly(vinylpyrrolidone) and a sol-gel solution of BST. The as-spun and calcined BST/PVP composite nanofibers were characterized by TG-DTA, X-ray diffraction, FT-IR, SEM and TEM, respectively. After calcination of the as-spun BST/PVP composite nanofibers at above 700 degrees C in air for 2 h, BST nanofibers of 188+/-25 nm in diameter having well-developed cubic-perovskite structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. Calcination at below 700 degrees C resulted in amorphous phase whereas BST with second phase such as barium titanate were formed at above 700 degrees C. Diameters of the nanofibers decreased from 208+/-35 to 161+/-18 nm with increasing calcination temperature between 600 and 800 degrees C.  相似文献   

16.
Hollow microblocks of [Zn(anic)_2], as a novel coordination compound, were synthesized using 2-aminonicotinic acid(Hanic) and zinc(Ⅱ) nitrate tetrahydrate. The chemical composition of the zinc complex, ZnC_(12)H_(10)N_4O_4, was determined by Fourier transform infrared(FTIR) spectroscopy and elemental analysis. The synthesized zinc complex was used as a precursor to produce ZnO nanostructures by calcination at 550 °C for 4 h. Morphological studies by scanning electron microscopy and transmission electron microscopy revealed the formation of porous microbricks of ZnO nanoparticles. N_2 adsorption-desorption analysis showed that the obtained ZnO microbricks possess a mesoporous structure with a surface area of 8.13 m~2/g and a pore size of 22.6 nm. The X-ray diffraction pattern of the final product proved the formation of a pure ZnO composition with a hexagonal structure. Moreover, FTIR analyses showed that the 2-aminonicotinic acid ligand peaks were absent after the calcination step. Diffuse reflectance spectroscopy was used to determine the band gap energy of the produced ZnO and it was about 3.19 eV. To investigate the photocatalytic activity of the porous ZnO nanostructure, a series of photocatalytic tests were carried out to remove Congo red, as a representative toxic azo dye, from aqueous solution. The results show that the product can be used as an efficient photocatalyst for waste water treatment with high degradation efficiency.  相似文献   

17.
Ba1−x Sr x TiO3(x = 0–0.5, BST) nanofibers with diameters of 150–210 nm were prepared by using electrospun BST/polyvinylpyrrolidone (PVP) composite fibers by calcination for 2 h at temperatures in the range of 650–800 °C in air. The morphology and crystal structure of calcined BST/PVP nanofibers were characterized as functions of calcination temperature and Sr content with an aid of XRD, FT-IR, and TEM. Although several unknown XRD peaks were detected when the fibers were calcined at temperatures less than 750 °C, they disappeared with increasing the temperature (above 750 °C) due to its thermal decomposition and complete reaction in the formation of BST. In addition, the FT-IR studies of BST/PVP fibers revealed that the intensities of the O–H stretching vibration bands (at 3430 and 1425 cm−1) became weaker with increasing the calcination temperature and a broad band at 540 cm−1, Ti–O vibration, appeared sharper and narrower after calcination above 750 °C due to the formation of metal oxide bonds. However, no effect of Sr content on the crystal structure of the composites was detected.  相似文献   

18.
A graded porous structure SnO2/ZnO composite was prepared with sunflower rods as a biological template. The prepared samples were subjected to phase analysis by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffractiometry(XRD) and X-ray photoelectron spectroscopy(XPS).ZnO sample was a pure phase of hexagonal wurtzite, and the template had been completely removed. The surface of the sample presented a honeycomb-like structure of a sunflower rod template, which was formed by interconnecting the porous channels, and had a smaller average size and exhibited n-n heterojunction at tlie n-type ZnO interface. Compared with that of pure ZnO, the response of the hierarchical porous structure SnO2/ZnO composite to 100 mg/L w-butanol reached a maximiuTi of 40.61 at 240℃, about 2.7 times higher than that of pure ZnO. Its response time and recovery time are 6 and 3 s, respectively, which are also better than those of pure ZnO. SnO2/ZnO composite exhibits good gas selectivity, which is related to the improvement of the structure and the forming of n-n heterojunctions of the material.  相似文献   

19.
用简单有效的静电纺丝法制备了Ce掺杂的In2O3纳米纤维材料.采用X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)和扫描电子显微镜(SEM)对合成样品的晶体结构和形貌进行了表征.结果显示,此纤维材料的平均直径约为90nm,长度达到几十个微米.气敏性能测试结果表明,4%(w)Ce掺杂的In2O3纳米纤维对三乙胺的灵敏度最高,该气敏元件对3μL·L-1三乙胺的灵敏度达到2.6,响应时间为5s,恢复时间约为6s,且具有较好的选择性.  相似文献   

20.
胡明江  王忠 《分析化学》2016,(9):1315-1321
采用同轴静电纺丝技术制备了SnO2-CuO复合纳米纤维,采用提拉法将SnO2-CuO纳米纤维涂覆于印有梳状Au电极的氧化铝陶瓷管表面形成敏感薄膜,设计了一种新型薄膜式H2 S传感器。采用 X 射线衍射、扫描电子显微镜和X-射线光电子能谱( XPS)表征SnO2-CuO纳米纤维的相组成和微观形貌,分析了敏感薄膜成分配比和厚度对硫化氢敏感机理和电化学特性。采用WS-30A型气敏元件分析仪测试了H2 S传感器敏感特性、温度特性、湿度特性、动态响应、抗干扰特性和稳定性。结果表明,以C50纳米纤维为敏感薄膜(膜厚为70 nm)的H2 S传感器,在温度为25℃, H2 S气体浓度为10~60 mg/L时,传感器线性度和灵敏度分别为92.3%和98.2%,响应最大值为1080,承受的最大相对湿度为95%,动态响应和恢复时间分别为4和12 s。此传感器对CO, NO2, SO2, NH3, CO2, CH4和H2等有害气体具有较好的抗干扰性。在矿井中连续使用12月后,响应衰减了9.2%,响应正常时间为10.9月。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号