首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rheological characteristics of Ca(OH)2 suspensions are investigated in order to check the elastic floc model for energy dissipation during flow. It is found that the energy, required to overcome the viscous drag experienced by particles moving within flocs, can account for the total energy dissipation.  相似文献   

2.
We construct a suspension of Smale's horseshoe diffeomorphism of the two-dimensional disc as a flow in an orientable three manifold. Such a suspension is natural in the sense that it occurs frequently in periodically forced nonlinear oscillators such as the Duffing equation. From this suspension we construct a knot-hòlder or template—a branched two-manifold with a semiflow—in such a way that the periodic orbits are isotopic to those in the full three-dimensional flow. We discuss some of the families of knotted periodic orbits carried by this template. In particular we obtain theorems of existence, uniqueness and non-existence for families of torus knots. We relate these families to resonant Hamiltonian bifurcations which occur as horseshoes are created in a one-parameter family of area preserving maps, and we also relate them to bifurcations of families of one-dimensional quadratic like maps which can be studied by kneading theory. Thus, using knot theory, kneading theory and Hamiltonian bifurcation theory, we are able to connect a countable subsequence of one-dimensional bifurcations with a subsequence of area-preserving bifurcations in a two parameter family of suspensions in which horseshoes are created as the parameters vary. One implication is that infinitely many bifurcation sequences are reversed as one passes from the one dimensional to the area-preserving family: there are no universal routes to chaos!  相似文献   

3.
Linear and nonlinear viscoelastic properties were examined for a 50 wt% suspension of spherical silica particles (with radius of 40 nm) in a viscous medium, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The effective volume fraction of the particles evaluated from zero-shear viscosities of the suspension and medium was 0.53. At a quiescent state the particles had a liquid-like, isotropic spatial distribution in the medium. Dynamic moduli G* obtained for small oscillatory strain (in the linear viscoelastic regime) exhibited a relaxation process that reflected the equilibrium Brownian motion of those particles. In the stress relaxation experiments, the linear relaxation modulus G(t) was obtained for small step strain (0.2) while the nonlinear relaxation modulus G(t, ) characterizing strong stress damping behavior was obtained for large (>0.2). G(t, ) obeyed the time-strain separability at long time scales, and the damping function h() (–G(t, )/G(t)) was determined. Steady flow measurements revealed shear-thinning of the steady state viscosity () for small shear rates (< –1; = linear viscoelastic relaxation time) and shear-thickening for larger (>–1). Corresponding changes were observed also for the viscosity growth and decay functions on start up and cessation of flow, + (t, ) and (t, ). In the shear-thinning regime, the and dependence of +(t,) and (t,) as well as the dependence of () were well described by a BKZ-type constitutive equation using the G(t) and h() data. On the other hand, this equation completely failed in describing the behavior in the shear-thickening regime. These applicabilities of the BKZ equation were utilized to discuss the shearthinning and shear-thickening mechanisms in relation to shear effects on the structure (spatial distribution) and motion of the suspended particles.Dedicated to the memory of Prof. Dale S. Parson  相似文献   

4.
Suspensions consisting of particles of colloidal dimensions have been reported to form connected structures. When attractive forces act between particles in suspension they may flocculate and, depending on particle concentration, shear history and other parameters, flocs may build-up in a three-dimensional network which spans the suspension sample. In this paper a floc network model is introduced to interpret the elastic behavior of flocculated suspensions at small deformations. Elastic percolation concepts are used to explain the variation of the elastic modulus with concentration. Data taken from the suspension rheology literature, and new results with suspensions of magnetic -Fe2O3 and non-magnetic -Fe2O3 particles in mineral oil are interpreted with the model proposed.Non-zero elastic modulus appeared at threshold particle concentrations of about 0.7 vol.% and 0.4 vol.% of the magnetic and non-magnetic suspensions, respectively. The difference is attributed to the denser flocs formed by magnetic suspensions. The volume fraction of particles in the flocs was estimated from the threshold particle concentration by transforming this concentration into a critical volume concentration of flocs, and identifying this critical concentration with the theoretical percolation threshold of three-dimensional networks of different coordination numbers. The results obtained indicate that the flocs are low-density structures, in agreement with cryo-scanning electron micrographs. Above the critical concentration the dynamic elastic modulus G was found to follow a scaling law of the type G ( f - f c ) f , where f is the volume fraction of flocs in suspension, and f c is its threshold value. For magnetic suspensions the exponent f was found to rise from a low value of about 1.0 to a value of 2.26 as particle concentration was increased. For the non-magnetic a similar change in f was observed; f changed from 0.95 to 3.6. Two other flocculated suspension systems taken from the literature showed a similar change in exponent. This suggests the possibility of a change in the mechanism of stress transport in the suspension as concentration increases, i.e., from a floc-floc bond-bending force mechanism to a rigidity percolation mechanism.  相似文献   

5.
It is proposed to investigate the stability of a plane axisymmetric flow with an angular velocity profile (r) such that the angular velocity is constant when r < rO – L and r > rO + L but varies monotonically from 1 to 2 near the point rO, the thickness of the transition zone being small L rO, whereas the change in velocity is not small ¦21¦ 2, 1. Obviously, as L O short-wave disturbances with respect to the azimuthal coordinate (k=m/rO 1/rO) will be unstable with a growth rate-close to the Kelvin—Helmholtz growth rate. In the case L=O (i.e., for a profile with a shear-discontinuity) we find the instability growth rate O and show that where the thickness of the discontinuity L is finite (but small) the growth rate does not differ from O up to terms proportional to kL 1 and 1/m 1. Using this example it is possible to investigate the effect of rotation on the flow stability. It is important to note that stabilization (or destabilization) of the flow in question by rotation occurs only for three-dimensional or axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–114, January–February, 1985.  相似文献   

6.
Thixotropy and antithixotropy were characterized in nuclear waste simulant slurries. For the neutralized current acid nuclear waste (NCAW) simulant slurries, NCAW with glycolic acid (NCAW+GA), and NCAW with nitric acid (NCAW+NA) (pH 4), a pre-shear flow at constant shear rate destroys the aggregates in the suspension and reduces viscosity. For the NCAW+NA (pH7–9), a pre-shear enhances the aggregates in the suspension and increases viscosity. With the addition of silica to the NCAW+GA and NCAW+NA slurries, the pre-shear effect tends to promote aggregation due to the formation of a network in the suspension, and hence, the viscosity increases. The macroscopic rheological property variation due to the microstructural aspects of the suspensions associated with the shear-induced effect are addressed.  相似文献   

7.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

8.
An optical probe measuring interfacial area () by light attenuation has been designed with a special emphasis on flows with sub-millimetric particles. It permits measurements in liquid-liquid or gas-liquid dispersions without need of introducing empirical correcting factors for the standard exponential decay law of light intensity while keeping an extended application range. This probe was successfully tested with an air-glass particle flow, the parameters of which were carefully determined basically by hold-up methods. The volume fraction of the dispersed phase was varied between 0.05% and 5%, and the particle size between 10 m and 300 m.List of symbols D diameter of spherical particle - D S Sauter diameter - E 0 irradiance on a surface perpendicular to light propagation 226E;=(1/l) averaged density function along y axis - f density function of a dispersion - f 1, f 2 focal length of the lenses L 1, L 2 - g granulometry function of a powder (probability density) - h granulometry function of a powder (unnormalized) - I 0, I light beam intensity respectively before and after passing through the dispersion - j volumetric powder flow - K 1, K 2, K 3 dimensionless constants - l optical path length of the beam in the dispersion - L experimental pipe width along x axis - m mass of a sample - n optical index of the continuous phase - p a, p 0 respectively slope of a and 0 straight line - r distance between particles - S d scattering cross-section - V volume of dispersion - averaged particles velocity - x, y, z spatial coordinates - interfacial area - a absolute interfacial area (by unit volume of dispersion) - 0 interfacial area measured by light attenuation method - d angle (around the initial direction of light propagation) within which a particle diffracts - dr detector aperture angle - light wavelength - d scattering cross section by unit volume of dispersion - light beam diameter - 1, 2 L1, and L2 lenses diameters - local volumetric fraction of dispersed phase - averaged fraction of dispersed phase along x axis - 2 averaged fraction of dispersed phase along x and y axis - volumetric mass of particles  相似文献   

9.
Summary Thixotropic behaviour of dilute (1.5%) and concentrated (5.3% to 8.3%) suspensions of Akli bentonite has been studied by different methods. Dilute suspensions gave soft gels on the addition of small amounts of KCl and KCNS and the equation log=A-BC (where was time of gelation,C was concentration of the electrolyte,A andB were constants) was found to hold good. The rotational viscometer method gave hysteresis loops (equatione y =a x b ; wherey was torque,x was r.p.m. anda andb were constants) with concentrated suspensions containing varying amounts of caustic soda. Regression equation has been given for various gel forming mixtures.Thanks are due to Messrs.A. R. Konkan andAbdul Aleem for helping in mathematical derivations.  相似文献   

10.
The theory of a vibrating-rod viscometer   总被引:3,自引:0,他引:3  
The paper presents a complete theory for a viscometer based upon the principle of a circular-section rod, immersed in a fluid, performing transverse oscillations perpendicular to its axis. The theory is established as a result of a detailed analysis of the fluid flow around the rod and is subject to a number of criteria which subsequently constrain the design of an instrument. Using water as an example it is shown that a practical instrument can be designed so as to enable viscosity measurement with an accuracy of ±0.1%, although it is noted that many earlier instruments failed to satisfy one or more of the newly-established constraints.Nomenclature A, D constants in equation (46) - A m , B m , C m , D m constants in equations (50) and (51) - A j , B j constants in equation (14) - a j + , a j wavenumbers given by equation (15) - C f drag coefficient defined in equation (53) - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - f(z) initial deformation of rod - f(), F m () functions of defined in equation (41) - F force in the rod - force per unit length near t=0 - F dimensionless force per unit length near t=0 - g m amplitude of transient force - G modulus of rigidity - h, h* functions defined by equations (71) and (72) - H functions defined by equation (69) and (70) - I second moment of area - I 0,1, J 0,1, K 0,1 modified Bessel functions - k, k functions defined in equations (2) - L half-length of oscillator - Ma Mach number - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equations (15) and (16) - R radius of rod - R c radius of container - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - y 0 initial lateral displacement - y 1, y 2 successive maximum lateral displacement - z axial coordinate - dimensionless tension - dimensionless mass of fluid - dimensionless drag of fluid - amplification factor - logarithmic decrement in a fluid - a , b logarithmic decrement in fluids a and b - 0 logarithmic decrement in vacuo - j logarithmic decrement in mode j in a fluid - spatial resolution of amplitude - v voltage resolution - r, , , s, , increments in R, , , s , , - dimensionless amplitude of oscillation - dimensionless axial coordinate - angular coordinate - f thermal conductivity of fluid - viscosity of fluid - viscosity of fluid calculated on assumption that * - a , b viscosity of fluids a and b - m constants in equation (10) - dimensionless displacement - j j the component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - spatial component of defined in equation (11) - j , tm jth, mth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - streamfunction - dimensionless frequency (based on ) - angular frequency - 0 angular frequency in absence of fluid and internal damping - j angular frequency in mode j in a fluid - a , b frequencies in fluids a and b  相似文献   

11.
The action of a highfrequency electromagnetic field on a dilute suspension of spherical particles with a constant dipole moment is studied using statistical mechanics. An expression for effective viscosity is obtained. It is shown that the shear viscosity of the dilute suspension depends on the frequency, magnitude, and direction of the highfrequency electromagnetic field. Depending on the frequency of the highfrequency electromagnetic field, the rotation of the suspension particles is decelerated or accelerated, with the viscosity increasing or decreasing, respectively. It is shown that the acceleration of the suspension particles by a highfrequency electromagnetic field and, hence, the decrease in shear viscosity has a resonant nature.  相似文献   

12.
Difficulties associated with the viscosity measurement of concentrated suspensions of particulate solids in a liquid solvent can effectively be overcome with the falling needle technique reported here. The comparison of the settling (terminal) velocity of a given needle in a Newtonian solvent, with its terminal velocity in a suspension, yields the suspension viscosity ratio directly. The van den Brule and Jongschaap constitutive model describes our high concentration data best. Falling sphere data (diameter of sphere/diameter of suspended particle 10) agree well with the falling needle data over the whole range (up to 40%) of solids concentrations used in our tests.In the opaque suspensions used, the passage of sedimenting needles and spheres was initially observed radiographically. Later tests used a more convenient technique using an inductance coil particle detector driven by a Colpitts oscillator.  相似文献   

13.
A large amount of data from the literature on viscosity of concentrated suspensions of rigid spherical particles are analyzed to support the new concept that the maximum packing fraction ( M ) is shear-dependent. Incorporation of this behavior in a rheological model for viscosity () as a function of particle volume fraction () succeeds in describing virtually all non-Newtonian effects over the entire concentration range and also accounts for a yield stress. The most successful model is one proposed by Krieger and Dougherty for Newtonian viscosities, (, M ), but with M varying from a low-shear limit M0 to a high-shear limit M. Microstructural interpretations of this behavior are advanced, with arguments suggesting that similar rheological models should apply to suspensions of nonspherical and irregular particles.Symbols a particle size scale (for spheres, the diameter) - A lumped kinetic parameter in eqs. (23) and (24) - BS butadiene-styrene - C coefficient in Arrhenius model, eq. (2) - D coefficient in Mooney model, eq. (3) - e i parameter representing one of the three electroviscous effects (i = 1, 2, or 3) - f fraction of total particulates that exist in the dispersed phase, eq. (22) - h solution factor, in Arrhenius model, eq. (2) - k crowding factor, in Mooney model, eq. (3) - k D ,k F kinetic rate coefficient for producing particles of dispersed or flocculated type, respectively - K Einstein coefficient for particles of any shape, eq. (1); equal to [] - KD Krieger-Dougherty model, eq. (6) - m exponent to characterize shear-dependence in viscosity models of Cross, eq. (10), and eq. (23), and also in yield stress prediction eq. (24) - N number of monodisperse components in a blend of spheres with different diameters - PD polydispersity (in size) parameter - S generalized shape parameter - T temperature - V c volume of chamber in figure 6, representing the entire volume of the sample - V P total volume of particles in the sample - V D ,V F sample volumes in which dispersed particles or flocculated particles, respectively, prevail; volumes of the dispersed phase or flocculated phase, containing both particles and carrier fluid - V PD ,V PF particle volume within the phase volumeV D orV F , respectively Greek coefficient in definition of c in eq. (8); of order unity - coefficient regulating -sensitivity in eq. (10) - shear rate,dv 1/dx 2 in simple shear - shear viscosity of the suspension - 0, low-shear and high-shear limiting values of - s viscosity of the suspending fluid - [] intrinsic viscosity, - r reduced viscosity,/ s - Boltzmann's constant; in c - shear stress - c parameter characterizing sensitivity of viscosity to stress, in eq. (8) - B dynamic yield stress in the floc model - y yield stress - volume fraction occupied by solids in a suspension - M maximum value of attainable by a given collection of particles under given conditions of flow - M0, M limiting values of M at the low- and high- conditions, respectively  相似文献   

14.
A function correlating the relative viscosity of a suspension of solid particles in liquids to their concentration is derived here theoretically using only general thermodynamic ideas, with out any consideration of microscopic hydrodynamic models. This function ( r = exp (1/2B * C 2)) has a great advantage over the many different functions proposed in literature, for it depends on a single parameter,B *, and is therefore concise. To test the validity of this function, a least-squares regression analysis was undertaken of available data on the viscosity and concentration of suspensions of coal particles in fuel oil, which promise to be a useful alternative to fuel oil in the near future. The proposed function was found to accurately describe the concentration-dependent behaviour of the relative viscosity of these suspensions. Furthermore, an attempt was made to obtain information about the factors affecting the value ofB *, however the results were only qualitative because of, among other things, the inaccuracy of the viscosity measurements in such highly viscous fluids. shear viscosity of the suspension - 0 shear viscosity of the Newtonian suspending medium - r = /0 relative viscosity - solid volume concentration - c solid weight concentration - m maximum attainable volume concentration of solids - solid volume concentration at which the relative viscosity of the suspension becomes infinite - c m maximum attainable solid weight concentration - s density of the solid phase - l density of the liquid phase - m density of the suspension - k n coefficients of theø-power series expansion of r - { j } sets of parameters specifying the thermodynamic state of the solid phase of a suspension - T absolute temperature (K) - f (c, T, j) formal expression for the relative variation of the viscosity with concentration = [1 / (/c)] T,j - d median size of the granulometric distribution - B plastic or Bingham viscosity - K consistency factor - n flow index - g ([c m c],T, j ) function including an asymptotic divergence asc tends toc m , formally describing the concentration dependent behaviour of the shear viscosity of a suspension - A (T, j) regression analysis parameters - B (T, j) regression analysis parameters - B * (T, j ) regression analysis parameters  相似文献   

15.
The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.List of symbols c test airfoil chord - C vortex generator airfoil chord - TA test airfoil - TE test airfoil trailing edge - TE G vortex generator airfoil trailing edge - t dimensionless time-interval measured from the vortex passage by the test airfoil trailing edge: gDt=(T-T- TEU/c - T time-interval measured from the start of VGA rotation - U free stream velocity - U vortex induced velocity fluctuation - VGA vortex generator airfoil - y distance in which the vortex passes the test airfoil - Z vortex circulation coefficient: Z=/(U · c/2) - vortex generator airfoil inclination angle - vortex circulation - vortex strength: =/2  相似文献   

16.
A study is made of steady two-dimensional seepage in a porous massif composed by a double-periodic system of white and black chequers of arbitrary conductivity. Rigorous matching of Darcy's flows in zones of different conductivity is accomplished. Using the methods of complex analysis, explicit formulae for specific discharge are derived. Stream lines, travel times, and effective conductivity are evaluated. Deflection of marked particles from the natural direction of imposed gradient and stretching of prescribed composition of these particles enables the elucidation of the phenomena of transversal and longitudinal dispersion. A model of pure advection is related with the classical one-dimensional vective dispersion equation by selection of dispersivity which minimizes the difference between the breakthrough curves calculated from the two models.  相似文献   

17.
We examine the case when equally sized small moons arrange themselves on the vertices of a regular n-gon for n 7. For n 4, there are at least 3 pure imaginary characteristic exponents, each of which has multiplicity = 1, a surprising result that makes it possible to apply the Lyapunov center theorem to verify the existence of some periodic perturbations. For sufficiently large n, when the regular n-gon is the unique central configuration, the number of families of periodic perturbations is at least equal to 2n – (n + 1)/4, where x is the greatest integer less than or equal to x.  相似文献   

18.
Negative thixotropy in ferric-oxide suspensions   总被引:1,自引:0,他引:1  
Negative thixotropy was observed in suspensions of ferric-oxide particles in mineral oil, in that viscosity increased with time under shear. The enhanced viscosity under the shear was retained under rest, and it decreased gradually by application of shear at lower shear-rate.The ferric-oxide powders used are acicular submicron maghemite and hematite. The dispersing medium is a heavy mineral oil. The suspensions were prepared with a ball mill in 33% by particle weight using a dispersing agent.A qualitative interpretation was made for the development of the phenomenon with a floc model in which suspensions of acicular particles form bulky structures with larger volume fraction of flocs phase at higher rate of shear, accompanied with increase of viscosity. The expanded structures, then, shrink again at lower shear-rate due to the inter-particle attractions.  相似文献   

19.
We prove that any bounded solution (u, u 1) ofu u +du t –u+f(u)=0,u=u(x, t), xN,N3, converges to a fixed stationary state provided its initial energy is appropriately small. The theory of concentrated compactness is used in combination with some recent results concerning the uniqueness of the so-called ground-state solution of the corresponding stationary problem.  相似文献   

20.
Übersicht Es werden verschiedene Bedingungen aufgestellt, die es erlauben, die durch die beiden (Systeme von) nichtlinearen DifferentialgleichungenA (u, ) = q, B (u, ) = und Randbedingungen zusammen mit den nichtlinearen algebraischen Relationenq = C(u, ), = D(u, ) beschriebene Aufgabe durch äquivalente Variationsprobleme zu ersetzen. Dabei zeigt sich ein enger Zusammenhang mit den in der Festkörpermechanik wohlbekannten Prinzipien der virtuellen Verschiebungen und der virtuellen Kräfte. Die auf systematischem Weg konstruierten Variationsfunktionale enthalten viele in der Physik bekannte Funktionale als Sonderfälle, insbesondere jene, die in der Elastomechanik nach Green, Castigliano, Hellinger, Reißner, Hu und Washizu benannt werden.
Summary In this paper there are established various conditions which allow a variational formulation of the problem described by the two (systems of) nonlinear differential equationsA(u, ) = q, B(u, ) = and boundary conditions together with the nonlinear algebraic relationsq = C(u, ), = D(u, ). Besides a close relationship is revealed to the principles of virtual displacements and virtual forces which are wellknown in solid mechanics. The systematically constructed variational functional contain many functionals in physics as special cases, mainly those of Green, Castigliano, Hellinger, Reißner, Hu and Washizu in elastomechanics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号