首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-point gauge correlation function in Yang–Mills–Chern–Simons theory in three dimensional Euclidean space is analysed by taking into account the non-perturbative effects of the Gribov horizon. In this way, we are able to describe the confinement and de-confinement regimes, which naturally depend on the topological mass and on the gauge coupling constant of the theory.  相似文献   

2.
Letters in Mathematical Physics - We provide an elegant homological construction of the extended phase space for linear Yang–Mills theory on an oriented and time-oriented Lorentzian manifold...  相似文献   

3.
4.
5.
Two-space one-time dimensional Chern–Simons–Higgs theory is quantized on the light-front in the broken (frozen) symmetry phase of the Higgs potential.  相似文献   

6.
On a five-dimensional simply connected Sasaki–Einstein manifold, one can construct Yang–Mills theories coupled to matter with at least two supersymmetries. The partition function of these theories localises on the contact instantons, however, the contact instanton equations are not elliptic. It turns out that these equations can be embedded into the Haydys–Witten equations (which are elliptic) in the same way the 4D anti-self-dual instanton equations are embedded in the Vafa–Witten equations. We show that under some favourable circumstances, the latter equations will reduce to the former by proving some vanishing theorems. It was also known that the Haydys–Witten equations on product manifolds \({M_5 = M_4 \times \mathbb{R}}\) arise in the context of twisting the 5D maximally supersymmetric Yang–Mills theory. In this paper, we present the construction of twisted N = 2 Yang–Mills theory on Sasaki–Einstein manifolds, and more generally on K-contact manifolds. The localisation locus of this new theory thus provides a covariant version of the Haydys–Witten equation.  相似文献   

7.
We construct a general type of multivortex solutions of the self-duality equations (the Bogomol'nyi equations) of (2+1) dimensional relativistic Chern–Simons model with the non-topological boundary condition near infinity. For such construction we use a perturbation argument around the explicit solutions of the Liouville equation. Received: 6 July 1999 / Accepted: 14 June 2000  相似文献   

8.
The field equations of supersymmetric Yang–Mills theory in ten dimensions may be formulated as vanishing curvature conditions on light-like rays in superspace. In this article, we investigate the physical content of the modified SO(7) covariant superspace constraints put forward earlier [11]. To this end, group-algebraic methods are developed which allow to derive the set of physical fields and their equations of motion from the superfield expansion of the supercurl, systematically. A set of integrable superspace constraints is identified which drastically reduces the field content of the unconstrained superfield but leaves the spectrum including the original Yang–Mills vector field completely off-shell. A weaker set of constraints gives rise to additional fields obeying first order differential equations. Geometrically, the SO(7) covariant superspace constraints descend from a truncation of Witten's original linear system to particular one-parameter families of light-like rays. Received: 20 April 2000 / Accepted: 10 September 2000  相似文献   

9.
10.
We investigate SU(3)-periodic vortices in the self-dual Chern–Simons theory proposed by Dunne in [13, 15]. At the first admissible non-zero energy level E= 2 π, and for each (broken and unbroken) vacuum state φ(0) of the system, we find a family of periodic vortices asymptotically gauge equivalent to φ(0), as the Chern–Simons coupling parameter k→ 0. At higher energy levels, we show the existence of multiple gauge distinct periodic vortices with at least one of them asymptotically gauge equivalent to the (broken) principal embedding vacuum, when k→ 0. Received: 23 October 1999 / Accepted: 14 March 2000  相似文献   

11.
We analyze the Chern–Simons-like term generation in the CPT-odd Lorentz-violating Yang–Mills theory interacting with fermions. Moreover, we study the anomalies of this model as well as its quantum stability. The whole analysis is performed within the algebraic renormalization theory, which is independent of the renormalization scheme. In addition, all results are valid to all orders in perturbation theory. We find that the Chern–Simons-like term is not generated by radiative corrections, just like its Abelian version. Additionally, the model is also free of gauge anomalies and quantum stable.  相似文献   

12.
13.
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N=2, d=5 Yang–Mills – SYM, N=2, d=5 – is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein–Cartan formulation of gravity and in the group manifold approach to gravity and supergravity theories. The group SYM, N=2, d=5, turns out to be the direct product of supergravity and a general gauge group .  相似文献   

14.
15.
We perform the perturbation analysis of the Chern–Simons modified gravity around the AdS4 spacetime (its curvature radius ) to obtain the critical gravity. In general, we could not obtain an explicit form of perturbed Einstein equation which shows a massive graviton propagation clearly, but for the Kerr–Schild perturbation and Chern–Simons coupling θ=kx/y, we find the AdS wave as a single massive solution to the perturbed Einstein equation. Its mass squared is given by M 2=[−9+(2 2/k−1)2]/4 2. At the critical point of M 2=0 (k= 2/2), the solution takes the log-form and the linearized excitation energies vanish.  相似文献   

16.
17.
18.
The contribution of nontrivial vacuum (topological) excitations, more specifically vortex configurations of the self-dual Chern–Simons–Higgs model, to the functional partition function is considered. By using a duality transformation, we arrive at a representation of the partition function in terms of which explicit vortex degrees of freedom are coupled to a dual gauge field. By matching the obtained action to a field theory for the vortices, the physical properties of the model in the presence of vortex excitations are then studied. In terms of this field theory for vortices in the self-dual Chern–Simons–Higgs model, we determine the location of the critical value for the Chern–Simons parameter below which vortex condensation can happen in the system. The effects of self-energy quantum corrections to the vortex field are also considered.  相似文献   

19.
The non-perturbative domain of QCD contains confinement, chiral symmetry breaking, and the bound state spectrum. For the calculation of the latter, the Coulomb gauge is particularly well-suited. Access to these non-perturbative properties should be possible by means of the Green’s functions. However, Coulomb gauge is also very involved, and thus hard to tackle. We introduce a novel BRST-type operator r, and show that the left-hand side of Gauss’ law is r-exact. We investigate a possible truncation scheme of the Dyson–Schwinger equations in first-order formalism for the propagators based on an instantaneous approximation. We demonstrate that this is insufficient to obtain solutions with the expected property of a linear-rising Coulomb potential. We also show systematically that a class of possible vertex dressings does not change this result.  相似文献   

20.
The correlation lengths of nonperturbative-nonconfining and confining stochastic background Yang–Mills fields are obtained by means of a direct analytic path-integral evaluation of the Green functions of the so-called one- and two-gluon gluelumps. Numerically, these lengths turn out to be in a good agreement with those known from the earlier, Hamiltonian, treatment of such Green functions. It is also demonstrated that the correlation function of nonperturbative-nonconfining fields decreases with the deviation of the path in this correlation function from the straight-line one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号