首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The cylindrical nano-indentation on metal film/elastic substrate is computationally studied using two-dimensional discrete dislocation plasticity combined with the commercial software ANSYS®, with a focus on the storage volume for geometrically necessary dislocations (GNDs) inside the films and the nano-indentation size effect (NISE). Our calculations show that almost all GNDs are stored in a rectangular area determined by the film thickness and the actual contact width. The variations of indentation contact width with indentation depth for various film thicknesses and indenter radii are fitted by an exponential relation, and then the GND density underneath the indenter is estimated. Based on the Taylor dislocation model and Tabor formula, a simple model for the dependence of the nano-indentation hardness of the film/substrate system on the indentation depth, the indenter radius and the film thickness is established, showing a good agreement with the present numerical results.  相似文献   

2.
A spatially resolved X-ray diffraction method – with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1 2 3) and Cu (0 0 1) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and back surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal.  相似文献   

3.
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes.  相似文献   

4.
In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension–compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto–plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension–compression–tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.  相似文献   

5.
The strengthening of Al by Mg solute atoms is investigated using molecular dynamics (MD) studies of single dislocations moving through a field of randomly placed solutes. The MD method permits explicit treatment of “core” effects, dislocation pinning and deceleration, and dislocation unpinning by thermal activation, all under an applied load. Choice of an appropriate MD simulation cell size is assessed using analytic concepts developed by Labusch. The interaction energy of a single Mg atom with straight edge and screw dislocations is computed and compared with continuum models. Using the single Mg energies, a one-dimensional energy landscape for the motion of a straight edge dislocation through a random field of Mg solutes is computed. The minima in this landscape match well with those found in the MD simulations at zero temperature. The stress to unpin a straight edge dislocation trapped in a local energy minimum generated by the solutes is then predicted semi-analytically using the energy landscape, and good agreement is obtained with the MD results. At temperatures of 300 and 500 K, the thermally activated rate of unpinning vs. stress and temperature is calculated semi-analytically, and agreement with the full MD results is again obtained with the fitting of a single attempt frequency in a transition state model. The agreement of the semi-analytical models provides a basis for calculating yield stress vs. strain rate and temperature, resulting from statistical pinning, for the case of non-interacting dislocations on a single slip system, and for extending the analysis to study dynamic strain aging effects resulting from diffusion of Mg atoms around a pinned dislocation.  相似文献   

6.
This contribution focuses on the development of constitutive models for the grain boundary region between two crystals, relying on the dislocation based polycrystalline model documented in (Evers, L.P., Parks, D.M., Brekelmans, W.A.M., Geers, M.G.D., 2002. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J. Mech. Phys. Solids 50, 2403–2424; Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401; Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. Solids Struct. 41, 5209–5230). The grain boundary is first viewed as a geometrical surface endowed with its own fields, which are treated here as distributions from a mathematical point of view. Regular and singular dislocation tensors are introduced, defining the grain equilibrium, both in the grain core and at the boundary of both grains. Balance equations for the grain core and grain boundary are derived, that involve the dislocation density distribution tensor, in both its regular and singular contributions. The driving force for the motion of the geometrically necessary dislocations is identified from the pull-back to the lattice configuration of the quasi-static balance of momentum, that reveals the duality between the stress and the curl of the elastic gradient. Criteria that govern the flow of mobile geometrically necessary dislocations (GNDs) through the grain boundary are next elaborated on these bases. Specifically, the sign of the projection of a lattice microtraction on the glide velocity defines a necessary condition for the transmission of incoming GNDs, thereby rendering the set of active slip systems for the glide of outgoing dislocations. Viewing the grain boundary as adjacent bands in each grain with a constant GND density in each, the driving force for the grain boundary slip is further expressed in terms of the GND densities and the differently oriented slip systems in each grain. A semi-analytical solution is developed in the case of symmetrical slip in a bicrystal under plane strain conditions. It is shown that the transmission of plastic slip occurs when the angle made by the slip direction relative to the grain boundary normal is less than a critical value, depending on the ratio of the GND densities and the orientation of the transmitted dislocations.  相似文献   

7.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

8.
The size dependent deformation of Cu single crystal micropillars with thickness ranging from 0.2 to 2.5 μm subjected to uniaxial compression is investigated using a Multi-scale Dislocation Dynamics Plasticity (MDDP) approach. MDDP is a hybrid elasto-viscoplastic simulation model which couples discrete dislocation dynamics at the micro-scale (software micro3d) with the macroscopic plastic deformation. Our results show that the deformation field in these micropillars is heterogeneous from the onset of plastic flow and is confined to few deformation bands, leading to the formation of ledges and stress concentrations at the surface of the specimen. Furthermore, the simulation yields a serrated stress–strain behavior consisting of discrete strain bursts that correlates well with experimental observations. The intermittent operation and stagnation of discrete dislocation arms is identified as the prominent mechanism that causes heterogeneous deformation and results in the observed macroscopic strain bursts. We show that the critical stress to bow an average maximum dislocation arm, whose length changes during deformation due to pinning events, is responsible for the observed size dependent response of the single crystals. We also reveal that hardening rates, similar to that shown experimentally, occur under relatively constant dislocation densities and are linked to dislocation stagnation due to the formation of entangled dislocation configuration and pinning sites.  相似文献   

9.
10.
《Comptes Rendus Mecanique》2017,345(12):908-921
One of the most successful models for describing the Portevin–Le Chatelier effect in engineering applications is the Kubin–Estrin–McCormick model (KEMC). In the present work, the influence of dynamic strain ageing on dynamic recovery due to dislocation annihilation is introduced in order to improve the KEMC model. This modification accounts for additional strain hardening rate due to limited dislocation annihilation by the diffusion of solute atoms and dislocation pinning at low strain rate and/or high temperature. The parameters associated with this novel formulation are identified based on tensile tests for a C–Mn steel at seven temperatures ranging from 20 °C to 350 °C. The validity of the model and the improvement compared to existing models are tested using 2D and 3D finite element simulations of the Portevin–Le Chatelier effect in tension.  相似文献   

11.
The purpose of this work is the application of continuum thermodynamics to the extension of standard crystal plasticity to account for the effects of the development of geometrically necessary dislocations (GNDs) on the material behavior. To this end, following Nye, Kondo, and many others, local deformation incompatibility in the material is adopted as a measure of the density of GNDs. Their development results in additional energy being stored in the material, resulting in additional kinematic-like hardening effects. The current approach generalized previous ones in that the thermodynamic formulation is based on the notion of generalized energy flux. A detailed comparison of the current approach and its results with previous such approaches and their results is given.  相似文献   

12.
A Phenomenological Mesoscopic Field Dislocation Mechanics (PMFDM) model is developed, extending continuum plasticity theory for studying initial-boundary value problems of small-scale plasticity. PMFDM results from an elementary space-time averaging of the equations of Field Dislocation Mechanics (FDM), followed by a closure assumption from any strain-gradient plasticity model that attempts to account for effects of geometrically necessary dislocations (GNDs) only in work hardening. The specific lower-order gradient plasticity model chosen to substantiate this work requires one additional material parameter compared to its conventional continuum plasticity counterpart. The further addition of dislocation mechanics requires no additional material parameters. The model (a) retains the constitutive dependence of the free-energy only on elastic strain as in conventional continuum plasticity with no explicit dependence on dislocation density, (b) does not require higher-order stresses, and (c) does not require a constitutive specification of a ‘back-stress’ in the expression for average dislocation velocity/plastic strain rate. However, long-range stress effects of average dislocation distributions are predicted by the model in a mechanistically rigorous sense. Plausible boundary conditions (with obvious implication for corresponding interface conditions) are discussed in some detail from a physical point of view. Energetic and dissipative aspects of the model are also discussed. The developed framework is a continuous-time model of averaged dislocation plasticity, without having to rely on the notion of incremental work functions, their convexity properties, or their minimization. The tangent modulus relating stress rate and total strain rate in the model is the positive-definite tensor of linear elasticity, and this is not an impediment to the development of idealized microstructure in the theory and computations, even when such a convexity property is preserved in a computational scheme. A model of finite deformation, mesoscopic single crystal plasticity is also presented, motivated by the above considerations.Lower-order gradient plasticity appears as a constitutive limit of PMFDM, and the development suggests a plausible boundary condition on the plastic strain rate for this limit that is appropriate for the modeling of constrained plastic flow in three-dimensional situations.  相似文献   

13.
Discrete dislocation plasticity models and strain-gradient plasticity theories are used to investigate the role of interfaces in the elastic–plastic response of a sheared single crystal. The upper and lower faces of a single crystal are bonded to rigid adherends via interfaces of finite thickness. The sandwich system is subjected to simple shear, and the effect of thickness of crystal layer and of interfaces upon the overall response are explored. When the interface has a modulus less than that of the bulk material, both the predicted plastic size effect and the Bauschinger effect are considerably reduced. This is due to the relaxation of the dislocation stress field by the relatively compliant surface layer. On the other hand, when the interface has a modulus equal to that of the bulk material a strong size effect in hardening as well as a significant reverse plasticity are observed in small specimens. These effects are attributed to the energy stored in the elastic fields of the geometrically necessary dislocations (GNDs).  相似文献   

14.
铝合金在汽车工业中的广泛应用对于降低汽车重量、减少燃油消耗和汽车尾气的排放量具有十分重要的意义,但其室温塑性成形性能却受到了锯齿形屈服行为的影响,从而制约了铝合金进一步的推广应用。本文基于合金材料塑性变形过程中位错和溶质原子间相互作用的分析,建立了一个可用于描述锯齿形屈服现象的唯象本构模型。该模型将溶质原子对位错运动的钉扎效应和位错挣脱后的脱钉效应置于一个统一的框架内进行考虑,而这两个效应的相互竞争将决定材料宏观变形行为的发展演化。基于该模型的数值模拟结果和实验测试结果取得了良好的一致性,从而验证了理论和模型的有效性。  相似文献   

15.
In this study we develop a gradient theory of small-deformation single-crystal plasticity that accounts for geometrically necessary dislocations (GNDs). The resulting framework is used to discuss grain boundaries. The grains are allowed to slip along the interface, but growth phenomenona and phase transitions are neglected. The bulk theory is based on the introduction of a microforce balance for each slip system and includes a defect energy depending on a suitable measure of GNDs. The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations. When applied to a grain boundary the theory leads to concomitant yield conditions: relative slip of the grains is activated when the shear stress reaches a suitable threshold; plastic slip in bulk at the grain boundary is activated only when the local density of GNDs reaches an assigned threshold. Consequently, in the initial stages of plastic deformation the grain boundary acts as a barrier to plastic slip, while in later stages the interface acts as a source or sink for dislocations. We obtain an exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen that abuts a rigid material. We view this problem as an approximation to a situation involving a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow. The solution exhibits large slip gradients within a thin layer at the grain boundary.  相似文献   

16.
The purpose of this work is the formulation of constitutive models for the inelastic material behaviour of single crystals and polycrystals in which geometrically necessary dislocations (GNDs) may develop and influence this behaviour. To this end, we focus on the dependence of the development of such dislocations on the inhomogeneity of the inelastic deformation in the material. More precisely, in the crystal plasticity context, this is a relation between the density of GNDs and the inhomogeneity of inelastic deformation in glide systems. In this work, two models for GND density and its evolution, i.e., a glide-system-based model, and a continuum model, are formulated and investigated. As it turns out, the former of these is consistent with the original two-dimensional GND model of Ashby (Philos. Mag. 21 (1970) 399), and the latter with the more recent model of Dai and Parks (Proceedings of Plasticity ’97, Neat Press, 1997, p. 17). Since both models involve a dependence of the inelastic state of a material point on the (history of the) inhomogeneity of the glide-system inelastic deformation, their incorporation into crystal plasticity modelling necessarily implies a corresponding non-local generalization of this modelling. As it turns out, a natural quantity on which to base such a non-local continuum thermodynamic generalization, i.e., in the context of crystal plasticity, is the glide-system (scalar) slip deformation. In particular, this is accomplished here by treating each such slip deformation as either (1), a generalized “gradient” internal variable, or (2), as a scalar internal degree-of-freedom. Both of these approaches yield a corresponding generalized Ginzburg-Landau- or Cahn-Allen-type field relation for this scalar deformation determined in part by the dependence of the free energy on the dislocation state in the material. In the last part of the work, attention is focused on specific models for the free energy and its dependence on this state. After summarizing and briefly discussing the initial-boundary-value problem resulting from the current approach as well as its algorithmic form suitable for numerical implementation, the work ends with a discussion of additional aspects of the formulation, and in particular the connection of the approach to GND modelling taken here with other approaches.  相似文献   

17.
The synchronization problem for a complex dynamical network is investigated in this paper from a spectral analysis approach. It is assumed that only a small portion of the nodes in the network are chosen to be controlled, known as the pinning control scheme. Some new types of synchronized regions for networks with different node dynamics and inner-coupling structures are discovered, especially for the case of the special chaotic node systems with a stable equilibrium point under fully anti-diagonal and partially anti-diagonal couplings. The eigenvalue distributions of the coupling and control matrices for different types of complex networks are obtained. The effects of the network topology, global coupling strength, pinning density, and pinning strength on the network synchronizability are examined through extensive numerical simulations. It is shown that the synchronizability of the pinned network can be effectively improved by increasing the overall coupling strength, pinning density, and pinning strength for some classes of synchronized regions, whereas too large the pinning density and pinning strength will lead to desynchronization for other classes. It is found that small-world networks are not always easier to synchronize than regular rings, and a denser eigenvalue distribution may not always imply better synchronizability.  相似文献   

18.
In continuum models of dislocations, proper formulations of short-range elastic interactions of dislocations are crucial for capturing various types of dislocation patterns formed in crystalline materials. In this article, the continuum dynamics of straight dislocations distributed on two parallel slip planes is modelled through upscaling the underlying discrete dislocation dynamics. Two continuum velocity field quantities are introduced to facilitate the discrete-to-continuum transition. The first one is the local migration velocity of dislocation ensembles which is found fully independent of the short-range dislocation correlations. The second one is the decoupling velocity of dislocation pairs controlled by a threshold stress value, which is proposed to be the effective flow stress for single slip systems. Compared to the almost ubiquitously adopted Taylor relationship, the derived flow stress formula exhibits two features that are more consistent with the underlying discrete dislocation dynamics: (i) the flow stress increases with the in-plane component of the dislocation density only up to a certain value, hence the derived formula admits a minimum inter-dislocation distance within slip planes; (ii) the flow stress smoothly transits to zero when all dislocations become geometrically necessary dislocations. A regime under which inhomogeneities in dislocation density grow is identified, and is further validated through comparison with discrete dislocation dynamical simulation results. Based on the findings in this article and in our previous works, a general strategy for incorporating short-range dislocation correlations into continuum models of dislocations is proposed.  相似文献   

19.
A strain gradient dependent crystal plasticity approach is used to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. Material points are considered as aggregates of grains, subdivided into several fictitious grain fractions: a single crystal volume element stands for the grain interior whereas grain boundaries are represented by bi-crystal volume elements, each having the crystallographic lattice orientations of its adjacent crystals. A relaxed Taylor-like interaction law is used for the transition from the local to the global scale. It is relaxed with respect to the bi-crystals, providing compatibility and stress equilibrium at their internal interface. During loading, the bi-crystal boundaries deform dissimilar to the associated grain interior. Arising from this heterogeneity, a geometrically necessary dislocation (GND) density can be computed, which is required to restore compatibility of the crystallographic lattice. This effect provides a physically based method to account for the additional hardening as introduced by the GNDs, the magnitude of which is related to the grain size. Hence, a scale-dependent response is obtained, for which the numerical simulations predict a mechanical behaviour corresponding to the Hall-Petch effect. Compared to a full-scale finite element model reported in the literature, the present polycrystalline crystal plasticity model is of equal quality yet much more efficient from a computational point of view for simulating uniaxial tension experiments with various grain sizes.  相似文献   

20.
In this paper, we show that herding phenomena in financial markets can be interpreted using the theoretical tools of pinning control. This is accomplished by viewing herding as a diffusion of a certain opinion in a network of financial agents, whose trading strategies dynamically depend on that of their neighbors according to a nonlinear state-dependent law. The interaction among the agents is modeled through a directed weighted graph, and following the logic of pinning control, we model the generic exogenous information triggering herding behavior as a control signal fed by an external entity to a subset of agents that, by virtue of the received information, can play the correct trading action. The topological conditions of partial pinning control theory enable us to predict the number of agents reaching consensus, i.e., the diffusion of information through the network, and thus the magnitude of the herding phenomenon triggered by the informed/pinned nodes. By testing our model of opinion dynamics in an artificial agent-based financial market, we prove that it is capable of replicating herding phenomena of different and predictable intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号