首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Ratcheting is defined as the accumulation of plastic strains during cyclic plastic loading. Modeling this behavior is extremely difficult because any small error in plastic strain during a single cycle will add to become a large error after many cycles. As is typical with metals, most constitutive models use the associative flow rule which states that the plastic strain increment is in the direction normal to the yield surface. When the associative flow rule is used, it is important to have the shape of the yield surface modeled accurately because small deviations in shape may result in large deviations in the normal to the yield surface and thus the plastic strain increment in multi-axial loading. During cyclic plastic loading these deviations will accumulate and may result in large errors to predicted strains.This paper compares the bi-axial ratcheting simulations of two classes of plasticity models. The first class of models consists of the classical von Mises model with various kinematic hardening (KH) rules. The second class of models introduce directional distortional hardening (DDH) in addition to these various kinematic hardening rules. Directional distortion describes the formation of a region of high curvature on the yield surface approximately in the direction of loading and a region of flattened curvature approximately in the opposite direction. Results indicate that the addition of directional distortional hardening improves ratcheting predictions, particularly under biaxial stress controlled loading, over kinematic hardening alone.  相似文献   

2.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

3.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

4.
The pressure-sensitive plastic response of a material has been studied in terms of the intrinsic sensitivity of its yield stress to pressure and the presence and growth of cavities. This work focuses on the interplay between these two distinctly different mechanisms and the attendant material behavior. To this end, a constitutive model is proposed taking both mechanisms into account. Using Gurson's homogenization, an upper bound model is developed for a voided solid with a plastically dilatant matrix material. This model is built around a three-parameter axisymmetric velocity field for a unit sphere containing a spherical void. The void is also subjected to internal pressure; this can be relevant for polymeric adhesives permeated by moisture that vaporizes at elevated temperatures. The plastic response of the matrix material is described by Drucker–Prager's yield criterion and an associated flow rule. The resulting yield surface and porosity evolution law of the homogenized constitutive model are presented in parametric form. Using the solutions to special cases as building blocks, approximate models with explicit forms are proposed. The parametric form and an approximate explicit form are compared against full-field solutions obtained from finite element analysis. They are also studied for loading under generalized tension conditions. These computational simulations shed light on the interplay between the two mechanisms and its enhanced effect on yield strength and plastic flow. Among other things, the tensile yield strength of the porous solid is greatly reduced by the internal void pressure, particularly when a liquid/vapor phase is the source of the internal pressure.  相似文献   

5.
An experimental analysis on the subsequent yield-surfaces evolution using multiple specimens is presented for a 45 steel after a prescribed pre-strain loading in three different directions respectively, and the yielding is defined by a designated offsetting strain. The size of the subsequent yield surface is found smaller than the initial yield surface; the negative cross effects are observed in the normal loading direction, its shape is not a Mises circle but has a rather blunt nose in loading direction and flat in the opposite. These results strongly depend on the loading path and the prescribed offset plastic strain. The plastic flow direction to the subsequent yield surface is investigated, and it is found that the plastic flow direction deviates from the normal flow rule. The deviation differs from preloading case to preloading case. And the plastic flow direction would have a larger deviation from the normal of the yield surface, if the subsequent yield was defined by a smaller offset strain. Furthermore, the experiments are simulated using the Chaboche model, and the results show that it can rationally predict yield-surface only when yield is defined by a fairly large offset strain.  相似文献   

6.
The work reported in this paper is part of the ongoing research on the development of suitable elastic–plastic constitutive models for multiphase materials. This paper is concerned with the application of an elastic–plastic constitutive model based on the Mróz-multi-surface kinematic hardening rule to particulate metal matrix composites (PMMCs). Details of the Mróz-based elastic–plastic constitutive model for PMMCs and its explicit implementation are presented to enhance the applicability of the model for a stress controlled simulation. Comparison between numerical predictions and experimental results is also presented for uniaxial loading and biaxial proportional and non-proportional loading paths. For the load paths tested, reasonable agreement is observed between the numerical and the experimental results.  相似文献   

7.
针对准脆性材料的非线性特征:强度软化和刚度退化、单边效应、侧限强化和拉压软化、不可恢复变形、剪胀及非弹性体胀,在热动力学框架内,建立了准脆性材料的弹塑性与各向异性损伤耦合的本构关系。对准脆性材料的变形机理和损伤诱发的各向异性进行了诠释,并给出了损伤构形和有效构形中各物理量之间的关系。在有效应力空间内,建立了塑性屈服准则、拉压不同的塑性随动强化法则和各向同性强化法则。在损伤构形中,采用应变能释放率,建立了拉压损伤准则、拉压不同的损伤随动强化法则和各向同性强化法则。基于塑性屈服准则和损伤准则,构建了塑性势泛函和损伤势泛函,并由正交性法则,给出了塑性和损伤强化效应内变量的演化规律,同时,联立塑性屈服面和损伤加载面,给出了塑性流动和损伤演化内变量的演化法则。将损伤力学和塑性力学结合起来,建立了应变驱动的应力-应变增量本构关系,给出了本构数值积分的要点。以单轴加载-卸载往复试验识别和校准了本构材料常数,并对单轴单调试验、单轴加载-卸载往复试验、二轴受压、二轴拉压试验和三轴受压试验进行了预测,并与试验结果作了比较,结果表明,所建本构模型对准脆性材料的非线性材料性能有良好的预测能力。  相似文献   

8.
This study develops a general theory for small-deformation viscoplasticity based on a system of microforces consistent with its own balance; a mechanical version of the second law that includes, via the microforces, work performed during viscoplastic flow; a constitutive theory that allows for dependences on plastic strain-gradients. The microforce balance and the constitutive equations—suitably restricted by the second law—are shown to be together equivalent to a flow rule that accounts for variations in free energy due to flow. When this energy is the sum of an elastic strain energy and a defect energy quadratic, isotropic, and positive definite in the plastic-strain gradients, the flow rule takes the form of a second-order parabolic PDE for the plastic strain coupled to the usual PDE arising from the standard macroscopic force balance and the elastic stress-strain relation. The classical macroscopic boundary conditions are supplemented by nonstandard boundary conditions associated with viscoplastic flow. As an aid to solution, a weak (virtual power) formulation of the nonlocal flow rule is derived.  相似文献   

9.
In a search for a constitutive model for ratcheting simulations, the models by Chaboche, Ohno–Wang, McDowell, Jiang–Sehitoglu, Voyiadjis–Basuroychowdhury and AbdelKarim–Ohno are evaluated against a set of uniaxial and biaxial ratcheting responses. With the assumption of invariant shape of the yield surface during plastic loading, the ratcheting simulations for uniaxial loading are primarily a function of the plastic modulus calculation, whereas the simulations for multiaxial loading are sensitive to the kinematic hardening rule of a model. This characteristic of the above mentioned models is elaborated in this paper. It is demonstrated that if all parameters of the kinematic hardening rule are determined from uniaxial responses only, these parameters primarily enable a better plastic modulus calculation. However, in this case the role of the kinematic hardening rule in representing the ratcheting responses for multiaxial loading is under-appreciated. This realization motivated many researchers to incorporate multiaxial load dependent terms or parameters into the kinematic hardening rule. This paper evaluates some of these modified rules and finds that none is general enough to simulate the ratcheting responses consistently for the experiments considered. A modified kinematic hardening rule is proposed using the idea of Delobelle and his co-workers in the framework of the Chaboche model. This new rule introduces only one multiaxial load dependent parameter to the Chaboche model, but performs the best in simulating all the ratcheting responses considered.  相似文献   

10.
QUASI-FLOWCORNERTHEORYONLARGEPLASTICDEFORMATIONOFDUCTILEMETALSANDITSAPPLICATIONSHuPing(胡平)LiuYuqi(柳玉启)GuoWei(郭威)TaiFeng(台风)(R...  相似文献   

11.
Compared with experiments, the J2 deformation theory of plasticity is known to predict plastic buckling with better accuracy than the more accepted incremental J2 flow theory. This paradox is commonly known as the ‘plastic buckling paradox’. In an attempt to analyse this discrepancy, the two mentioned constitutive models were implemented in a non-linear finite element code, along with a third non-associative J2 flow theory. The latter model incorporates a vertex-type plastic flow rule. Using these three constitutive models, the buckling behaviour of plate outstand elements was investigated. Comparisons between the buckling strengths derived are presented. The non-linear static buckling simulations show that the instability introduced by the alternative flow rule of the non-associative model has substantial influence on the buckling behaviour. The acceptance of only small departures from normality was shown to reduce the predicted ultimate capacity of the plates. Furthermore, for plates with small plate slendernesses it was found that the imperfection sensitivity was significantly reduced when using the non-associative flow rule.  相似文献   

12.
This paper is concerned with an analysis of strain localization in ductile crystals deforming by single slip. The plastic flow is modelled as rate-insensitive, and localization, viewed as a bifurcation from a homogeneous deformation mode to one which is concentrated in a narrow ‘shear band’, is found to be possible only when the plastic hardening modulus for the slip system has fallen to a certain critical value hcr, sensitive to the precise form of the constitutive law governing incremental shear. We develop the general form of this constitutive law, incorporating within it the possibility of deviations from the Schmid rule of a critical resolved shear stress, and we show that hcr may in fact be positive when there are deviations from the Schmid rule. It is suggested that micromechanical processes such as ‘cross-slip’ in crystals provide specific cases for which stresses other than the Schmid stress may influence plastic response and, further, there is an experimental association of localization with the onset of large amounts of cross-slip. Thus, we give the specific form of hcr for a constitutive model that corresponds to non-Schmid effects in cross-slip, and we develop a dislocation model of the process from which we estimate the magnitude of the parameters involved. The work supports the notion that localization can occur with positive strain-hardening, hcr > 0, and the often invoked notions of the attainment of an ideally-plastic or strain-softening state for localization may be unnecessary.  相似文献   

13.
工程应用中,金属材料和结构往往处于复杂应力状态。材料的塑性行为会受到应力状态的影响,要精确描述材料在复杂应力状态下的塑性流动行为,必须在本构模型中考虑应力状态效应的影响。然而,由于在动态加载下材料的应变率效应和应力状态效应相互耦合、难以分离,给应力状态效应的研究和模型的建立造成很大困难。通过对Ti-6Al-4V钛合金材料开展不同加载条件下的力学性能测试,提出了一个包含应力三轴度和罗德角参数影响的新型本构模型,并通过VUMAT用户子程序嵌入ABAQUS/Explicit软件。分别采用新提出的塑性模型和Johnson-Cook模型对压剪复合试样的动态实验进行了数值模拟。结果表明,新模型不仅在对材料本构曲线的拟合方面具有较强的优势,而且由该模型所得到的透射脉冲和载荷-位移曲线均更加准确。因此,该模型能够更精确地描述和预测金属材料在复杂应力状态下的塑性流变行为。  相似文献   

14.
固体力学研究者致力于具有应力-应变本构关系(以下简称为形变型本构关系)的变形体的力学响应研究,而流体力学研究者致力于具有应力-应变率本构关系(以下简称为流动型本构关系)的流动体的力学响应研究。当涉及结构和材料的动态塑性时,到底应该用“塑性变形”还是“塑性流动”来表示?本文从宏观塑性本构理论和微观位错动力学机理两个角度,分别讨论并指出塑性本构关系属于流动型黏塑性率相关本构关系,且同时适用于加载和卸载;因而不应该用应力-应变图来描述塑性加-卸载过程。弹塑性本构关系则是一种形变型和流动型本构关系的耦合。  相似文献   

15.
For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value of the maximum angle of deviation from normality in the non-normality flow rule.  相似文献   

16.
Tensile tests on three high-strength steels exhibiting Lüders band propagation are carried out at room temperature and under quasi-static loading conditions. Displacement and temperature fields on the surface of the flat samples are measured by digital image correlation and digital infrared thermography, respectively. The true stress versus true strain curves were calculated from the displacement data, while the thermal data were used to estimate the heat sources using the local heat diffusion equation. Based on these measurements the stored and dissipated energies were estimated up to diffuse necking. A thermodynamically consistent elastic-plastic constitutive model including the von Mises yield criterion, the associated flow rule and two non-linear isotropic hardening variables is applied to describe the behaviour of the high-strength steels. It is shown that this simple model is able to reproduce both the local behaviour, such as the power associated to heat sources, and the global behaviour, such as Lüders band propagation and stored and dissipated energies. It is further shown that the ratio of dissipated power to plastic power varies during plastic straining and that this variation is captured reasonably well in the numerical simulations.  相似文献   

17.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

18.
强动载荷下金属材料塑性变形本构模型评述   总被引:2,自引:0,他引:2  
爆炸、高速冲击等强动载荷作用下金属材料塑性流动的本构模型研究是冲击动力学领域备受关注的课题,近几十年来的研究成果极大地推动了冲击波物理、冲击动力学、材料科学等领域的发展. 本文对金属材料塑性变形动力学数值计算中重要的、得到普遍应用的本构模型进行了回顾和评述,进一步明确其适用范围、优点和不足,为冲击载荷下材料响应的数值模拟对本构模型的选取提供参考. 其中最新的、适用范围最广的PTW本构模型应给以特别地关注,其研究方法及应用前景都值得我们借鉴和期待.   相似文献   

19.
An improved model of material behavior is proposed that shows good agreement with experimental data for both yield and plastic strain ratios in uniaxial, equi-biaxial, and plane-strain tension under proportional loading for steel, aluminum and possibly other alloys. This model is based on a non-associated flow rule in which the plastic potential and yield surface functions are defined by quadratic functions of the stress tensor. The plastic potential aspect of the model is identical to that proposed by Hill for a quadratic anisotropic plastic potential defined in terms of measured r values. The new model differs in that the yield surface, although also defined by a quadratic function of the stress tensor, is defined independently of the plastic potential in terms of measured yield stresses. The model is developed and implemented in an FEM code that is based on a convected coordinate system. Since the associated flow rule, which assumes equivalency between the plastic potential and yield functions, is commonly accepted as a valid law in the theory of plastic deformation of most metals, the arguments for the associated flow rule are also discussed.  相似文献   

20.
一般加载规律的弹塑性本构关系   总被引:1,自引:1,他引:0  
将有关文献给出一般加载规律一维全量理论的简单模型推广到一般加载规律的一维增量理论,进而推广到一般加载规律的多维增量理论,在此基础上,建立了推导一般加载规律的多维增量理论的本构关系的一种途径。应用这种途径,从应力空间的加载函数和应变空间的加载函数出发,推导了等向强化材料和被加热的等向强化材料的一般加载规律的弹塑性本构关系的两种表示形式。理论和实例均表明,这种途径对等向强化材料、随动强化材料和理想弹塑性材料均适用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号