首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of dimeric complex [Rh(CO)2Cl]2 with hemilabile ether‐phosphine ligands Ph2P(CH2) nOR [n = 1, R = CH3 (a); n = 2, R = C2H5 (b)] yield cis‐[Rh(CO)2Cl(P ~ O)] (1) [P ~ O = η 1‐(P) coordinated]. Halide abstraction reactions of 1 with AgClO4 produce cis‐[Rh(CO)2(P ∩ O)]ClO4 (2) [P ∩ O = η 2‐(P,O)chelated]. Oxidative addition reactions of 1 with CH3I and I2 give rhodium(III) complexes [Rh(CO)(COCH3)ClI(P ∩ O)] (3) and [Rh(CO)ClI2(P ∩ O)] (4) respectively. The complexes have been characterized by elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The catalytic activity of 1 for carbonylation of methanol is higher than that of the well‐known [Rh(CO)2I2]? species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The synthesis and properties of neutral and cationic complexes of general formulae [{RhCl(diolefin)}2(CH2(pz)2)], [Rh(CO)2 (CH2(pz)2)][RhCl2(CO)2], (Rh(diolefin)(CH2(pz)2)]ClO2, [{Rh(diolefin)(PPh3)}2(CH2(pz)2)](ClO4)2, [Rh(CO)2(CH2(pz)2)]ClO4 and [Rh(CO)(CH2(pz)2)(PPh3)]ClO4 are described. The NMR spectra of [Rh(COD)(CH2(pz)2)]ClO4 complexes are discussed. X-ray structural analysis of [Rh(COD)(CH2(Pz)2)]ClO4 · 12C2H4Cl2 is presented; the final R factor is 0.061 for 2436 observed data, recorded with Cu-Kα, not corrected for absorption and with the sample inside a capillary. The Rh atom presents a distorted square planar coordination in a mononuclear arrangement. The COD ring has a twisted boat conformation, and the two halves of the CH2(Pz)2 moiety, which are quite similar to one another, form an angle of 47.2(4)°.  相似文献   

3.
Summary The preparation and properties of cationic arenerhodium(I) complexes of general formula [Rh(diolefin)(6arene)]ClO4 (diolefin=1,5-cyclooctadiene, tetrafluorobenzobarrelene or trimethyltetrafluorobenzobarrelene; arene = biphenyl or diphenylmethane) are described. These complexes react with the solvated intermediate complex [Rh(diolefin)(Me2CO)x]ClO4 to give homobimetallic [(diolefin)Rh(Ph2CH2)Rh(diolefin)](ClO4)2 derivatives. New heterobimetallic complexes of the type [(diolefin)Rh(Ph2CH2)Cr(CO)3]ClO4 have been synthesized by reaction of Cr(CO)3(6-Ph2CH2) with the solvated complex [Rh(diolefin)(Me2CO)x]ClO4 or, alternatively by treatment of [Rh(diolefin)(6-arene)]ClO4 with the complex Cr(CO)3(6Me3B3N3Me3) in chloroform solution.  相似文献   

4.
The phosphine Ph2PCH2CH2Cl reacts with fac-[XMn(CO)3(dppm)] (X = Cl or Br) in refluxing toluene to give the complexes cis,cis-[XMn(CO)2(dppm)(Ph2PCH2CH2Cl)] (I). Treatment of those species with Na amalgam in THF leads to the alkyl complex [Ph2PCH2CH2Mn(CO)2(dppm)] (II), which does not react with CO under normal conditions but can be converted into cis,cis-[ClMn(CO)2(dppm)(PPh2Et)] by reacting with HCl (g) in ether. If the reduction of I with Na/Hg is carried out in the presence of CO the compound cis-[Ph2PCH2CH2(O)CMn(CO)2(dppm)] (III) is obtained. The latter has also been prepared directly from fac-[BrMn(CO)3(dppm)], Ph2PCH2CH2Cl, and Na/Hg in THF, and characterized by X-ray crystallography. The crystals are monoclinic, space group P21/n; refinement gave R = 0.053 for 2593 reflections with I ? 2.5σ(I). The reaction of the complex fac-[O3ClOMn(CO)3(dppm)] with Ph2PCH2CH2Cl in Cl2CH2 gives the salt fac-[Mn(CO)3(dppm)(Ph2PCH2CH2Cl)]ClO4 which isomerizes to mer-[Mn(CO)3(dppm)(Ph2PCH2CH2Cl)]ClO4 in boiling butanol. Both cationic carbonyl complexes give the acyl species III upon reduction with Na amalgam.  相似文献   

5.
Several (diolefin)M(A) complexes (M = Rh, Ir) were prepared, where AH is 1-phenyl-3-methyl- 4-benzoylpyrazolone-5, a very stable asymmetric analogue of acetylacetone. In these complexes the diolefin could be replaced by one mole of (Ph2PCH2CH2)2, two of CO or of PPh3, or three of CNBut, while 1,10-phenanthroline displaced the chelating ligand to yield [(cyclooctadiene)Rh(phen)]+ (A)?. Some compounds X?Y (X?Y = iodine or MeI) added oxidatively yielding the corresponding trivalent species. Using 31P NMR spectra the presence of the expected steric isomers was detected in (Ph3P)(CO)Rh(A) and in (Ph3P) (CO)Rh(A)(X)(Y).  相似文献   

6.
Cationic rhodium(I) complexes of the general formula [Rh(COD)L2]ClO4 (L2 = bipyO2, phenO, dpeO2 and dpmO2) are prepared from the solvated species [Rh(COD)(Me2CO)x]+ and the appropriate ligand. Complexes of the type [Rhn(COD)n](ClO4)n (CNPyO = 4-cyano and 2-cyanopyridine N-oxide) are obtained similarly. Reaction of [RhCl(COD)]2 with the potassium salt of 2-picolinic acid N-oxide leads to the neutral complex Rh(COOPyO)(COD). The mononuclear rhodium diolefinic compounds react with carbon monoxide to give complexes of the type [Rh(CO)2L2]ClO4 and Rh(COOPyO)(CO)2, which on treatment with triphenylphosphine yield monocarbonyl derivatives.The catalytic activities of the diolefin complexes and related derivatives in hydrogen-transfer catalytic reactions have been studied.  相似文献   

7.
The preparation of cationic indazole (HIdz) rhodium(I) complexes of the types [(diolefin)Rh(HIdz)2]ClO4 and [(CO)2Rh(HIdz)2]ClO4 is described. Neutral binuclear rhodium(I) complexes of the type [Y2Rh(μ-Idz)]2 (Y2  COD, TFB, NBD, (CO)2 or (CO)(PPh3)) are obtained by treating the corresponding complexes [Y2RhCl]2 with indazole and organic or inorganic bases. The cationic mononuclear derivatives react with the solvated species [Y2Rh(acetone)x]ClO4 in the presence of triethylamine to give neutral binuclear complexes of the types [(CO)2Rh(μ-Idz)2Rh(diolefin)], [(Ph3P)(CO)Rh(μ-Idz)2Rh(diolefin)] and [(diolefin)Rh(μ-Idz)Rh(diolefin′)] (diolefin  COD, TFB or NBD; diolefin′  COD or TFB). Alternative methods for the synthesis of the binuclear complexes are also described.  相似文献   

8.
《Polyhedron》1986,5(9):1483-1485
Reactions of Rh(ClO4)(CO)(PPh3)2 with nitriles produce new cationic rhodium(I) complexes, [RhL(CO)(PPh3)2]ClO4 [L = CH3CN (1), CH3CH2CH2CN (2) or C6H5CN (3)], whose spectral data suggest that the nitriles are coordinated through the nitrogen atom. Formation constants for the reaction Rh(ClO4)(CO)(PPh3)2 + L ⇋ [RhL(CO)(PPh3)2]ClO4, have been measured to be 1.01 × 105 M−1 (CH3CN), 1.07 × 105 M−1 (CH3CH2CH2CN) and 2.59 × 104 M−1 (C6H5CN) at 25°C in monochlorobenzene. The differences in the formation constants for the different nitriles seem to be predominantly due to differences in ΔH (not to differences in ΔS). The nitriles in 1–3 are readily replaced with nitrogen base ligands (unsaturated nitriles and pyridine) and PPh3.  相似文献   

9.
A series of related acetylacetonate–carbonyl–rhodium compounds substituted by functionalized phosphines has been prepared in good to excellent yields by the reaction of [Rh(acac)(CO)2] (acac is acetylacetonate) with the corresponding allyl‐, cyanomethyl‐ or cyanoethyl‐substituted phosphines. All compounds were fully characterized by 31P, 1H, 13C NMR and IR spectroscopy. The X‐ray structures of (acetylacetonato‐κ2O,O′)(tert‐butylphosphanedicarbonitrile‐κP)carbonylrhodium(I), [Rh(C5H7O2)(CO)(C8H13N2)] or [Rh(acac)(CO)(tBuP(CH2CN)2}] ( 2b ), (acetylacetonato‐κ2O,O′)carbonyl[3‐(diphenylphosphanyl)propanenitrile‐κP]rhodium(I), [Rh(C5H7O2)(C15H14N)(CO)] or [Rh(acac)(CO){Ph2P(CH2CH2CN)}] ( 2h ), and (acetylacetonato‐κ2O,O′)carbonyl[3‐(di‐tert‐butylphosphanyl)propanenitrile‐κP]rhodium(I), [Rh(C5H7O2)(C11H22N)(CO)] or [Rh(acac)(CO){tBu2P(CH2CH2CN)}] ( 2i ), showed a square‐planar geometry around the Rh atom with a significant trans influence over the acetylacetonate moiety, evidenced by long Rh—O bond lengths as expected for poor π‐acceptor phosphines. The Rh—P distances displayed an inverse linear dependence with the coupling constants JP‐Rh and the IR ν(C[triple‐bond]O) bands, which accounts for the Rh—P electronic bonding feature (poor π‐acceptors) of these complexes. A combined study from density functional theory (DFT) calculations and an evaluation of the intramolecular H…Rh contacts from X‐ray diffraction data allowed a comparison of the conformational preferences of these complexes in the solid state versus the isolated compounds in the gas phase. For 2b , 2h and 2i , an energy‐framework study evidenced that the crystal structures are mainly governed by dispersive energy. In fact, strong pairwise molecular dispersive interactions are responsible for the columnar arrangement observed in these complexes. A Hirshfeld surface analysis employing three‐dimensional molecular surface contours and two‐dimensional fingerprint plots indicated that the structures are stabilized by H…H, C…H, H…O, H…N and H…Rh intermolecular interactions.  相似文献   

10.
Chemistry of Polyfunctional Molecules. 82. New Rhodium(1) Chelate Complexes with N,N-Bis(diphenylphosphino) alkyl- and -arylamines . [Rh(μ-Cl)(CO)2]2 ( 1 ) reacts with (Ph2P)2NR (2, a: R = C6H5, b: R = p-C6H4CH3) in a molar ratio of 1:2 to give the square plane, ionic complexes [Rh{(PH2P)2NR}2] [cis-Rh(CO)2Cl2] ( 3a, b ). By the reactions of [Rh(μ-Cl)(C8H12)]2(C8H12 = 1.5-Cyclooctadiene) (4) with (Ph2P)2NR ( 2a–d ) (c: R = CH3, d: R = C2H5) in the molar ratios of 1:4 the square plane 1:1 electrolytes [Rh{(Ph2P)2NR}2]Cl ( 5a–d ) are obtained. Upon treatment of 5a–d in dichloromethane with CO the complexes [Rh(CO){(Ph2P)2NR}2]Cl ( 6a–d ) are formed. They are only stable in solution and in CO atmosphere and were identified by infrared spectroscopy. The new complexes have been characterized, as far as possible, by conductometry, IR; FIR, Raman, 31P-NMR, and 1H-NMR spectra.  相似文献   

11.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

13.
The reaction of Fe(CO)(CH2 CHCHCH2)2 with (Ph2 PCH2)2 results in formation of a 41 mixture of two isomers of Fe(CO)(CH2 CHCHCH2)-(Ph2 PCH2 CH2 PPh2). NMR studies concerning the structures of these isomers and their dynamic behavior in solution are described.  相似文献   

14.
A number of cationic rhodium(I) complexes of the type [Rh(CO)2(NN)]ClO4, [Rh(CO)2L3]ClO4 and [Rh(CO)(NN)L2]ClO4, where (NN) is 2,2-bipyridine or 1,10-phenanthroline and L is a tertiary phosphine or arsine, have been isolated and their structures assigned. The configuration of the complexes ion [Rh(CO)2L3]+ appears to depend critically on the size of the ligand L.  相似文献   

15.
Heating a toluene solution of dicarhomethoxyacetylenebis(triphenylphosphine)platinum(0) at 130°C gives the ortho-metalated complex (Ph3P)(Ph2PC6H4)Pt-trans-(COOMe)CCHCOOMe.  相似文献   

16.
Synthesis and Characterization of 2‐O‐Functionalized Ethylrhodoximes and ‐cobaloximes 2‐Hydroxyethylrhodoxime and ‐cobaloxime complexes L—[M]—CH2CH2OH (M = Rh, L = PPh3, 1 ; M = Co, L = py, 2 ; abbr.: L—[M] = [M(dmgH)2L] (dmgH2 = dimethylglyoxime, L = axial base) were obtained by reaction of L—[M] (prepared by reduction of L—[M]—Cl with NaBH4 in methanolic KOH) with BrCH2CH2OH. H2O—[Rh], prepared by reduction of H[RhCl2(dmgH)2] with NaBH4 in methanolic KOH, reacted with BrCH2CH2OH followed by addition of pyridine yielding py—[Rh]—CH2CH2OH ( 3 ). Complexes 1 and 3 were found to react with (Me3Si)2NH forming 2‐(trimethylsilyloxy)ethylrhodoximes L—[Rh]—CH2CH2OSiMe3 (L = PPh3, 4 ; L = py, 5 ). Treatment of complex 1 with acetic anhydride resulted in formation of the 2‐(acet oxy)ethyl complex Ph3P—[Rh]—CH2CH2OAc ( 6 ). All complexes 1 — 6 were isolated in good yields (55—71 %). Their identities were confirmed by NMR spectroscopic investigations ( 1 — 6 : 1H, 13C; 1 , 4 , 6 : 31P) and for [Rh(CH2CH2OH)(dmgH)2(PPh3)]·CHCl3·1/2H2O ( 1 ·CHCl3·1/2H2O) and py—[Rh]—CH2CH2OSiMe3 ( 5 ) by X‐ray diffraction analyses, too. In both molecules the rhodium atoms are distorted octahedrally coordinated with triphenylphosphine and the organo ligands (CH2CH2OH and CH2CH2OSiMe3, respectively) in mutual trans position. Solutions of 1 in dmf decomposed within several weeks yielding a hydroxyrhodoxime complex “Ph3P—[Rh]—OH”. X‐ray diffraction analysis exhibited that crystals of this complex have the composition [{Rh(dmg)(dmgH) (H2O)(PPh3)}2]·4dmf ( 7 ) consisting of centrosymmetrical dimers. The rhodium atom is distorted octahedrally coordinated. Axial ligands are PPh3 and H2O. One of the two dimethylglyoximato ligands is doubly deprotonated. Thus, only one intramolecular O—H···O hydrogen bridge (O···O 2.447(9)Å) is formed in the equatorial plane. The other two oxygen atoms of dmgH and dmg2—, respectively, act as hydrogen acceptors each forming a strong (intermolecular) O···H′—O′ hydrogen bridge to the H′2O′ ligand of the other molecule (O···O′ 2.58(2)/2.57(2)Å).  相似文献   

17.
The rhodium(I) complex [Rh(CO)(PEt3)(mnt)]? (mnt = maleonitriledithiolate) reacts with a variety of alkyl halides to form acyl complexes isolated in the presence of excess PEt3 as five-coordinate species of formula [Rh(COR)(PEt3)2(mnt)]. The structure of the complex for R = n-Pr has been determined by an X-ray analysis, and is found to be a square-based pyramid with the acyl group in the apical position. Addition of HClO4 to the rhodium(I) anion in the presence of excess PEt3 yields rhodium(III) hydride, [RhH(CO)(PEt3)2(mnt)], while addition of acid to the rhodium(I) complex in CH3CN solution with ethylene present leads slowly to formation of an acyl complex which is isolated as [Rh(COEt)(PEt3)2(mnt)] upon phosphine addition. A novel alkyl group migration from the acyl carbon to a donor S atom is also observed in monophosphine systems.  相似文献   

18.
Oxidation of rhodium(I) carbonyl chloride, [Rh(CO)2Cl]2, with copper(II) acetate or isobutyrate in methanol solutions yields binuclear double carboxylato bridged rhodium(II) complexes with RhRh bonds, [Rh(μ-OOCRκO)(COOMeκC)(CO)(MeOH)]2, where R=CH3 or i-C3H7. According to X-ray data, surrounding of each rhodium atom in these complexes is close to octahedral and consists of another rhodium atom, two oxygens of carboxylato ligands, terminal carbonyl group, C-bonded methoxycarbonyl ligand, and axial CH3OH. Methoxycarbonyl ligand is shown to originate from CO group of the parent [Rh(CO)2Cl]2 and OCH3 group of solvent. N- and P-donor ligands L (p-CH3C6H4NH2, P(OPh)3, PPh3, PCy3) readily replace the axial MeOH yielding [Rh(μ-OOCRκO)(COOMeκC)(CO)(L)]2. The X-ray data for the complex with R=i-C3H7, L=PPh3 showed the same molecular outline as with L=MeOH. Electronic effects of axial ligands L on the spectral parameters of terminal carbonyl group are essentially the same as in the known series of rhodium(I) complexes (an increase of δ13C and a decrease of ν(CO) with strengthening of σ-donor and weakening of π-acceptor ability of L).  相似文献   

19.
Reactions of [(η5-R)Rh(CO)2] (R = cp, ind) with water-soluble phosphines (L = 1,3,5-triaza-7-phosphaadamantane and tris(2-cyanoethyl)phosphine) give the new rhodium(I) complexes of the types [Rh(η5-cp)(CO)(PTA)] (1), [Rh(η5-cp)(CO)(P(CH2CH2CN)3)] (2), [Rh(η5-ind)(CO)(PTA)] (3) and [Rh(η5-ind)(CO)(P(CH2CH2CN)3)] (4) in isolated yields of 52-75%. All these compounds have been fully characterized by IR, 1H, 31P{1H} and 13C{1H} NMR, FAB-MS spectroscopies and elemental analyses. Reactivity for the substitution of phosphine is greater for [(η5-ind)Rh(CO)(L)] comparing to [(η5-cp)Rh(CO)(L)] because of a flexibility of the indenyl ligand to undergo facile η5-η3 coordinative isomerizations. The obtained complexes are active catalyst precursors for the dehydrogenation of propan-2-ol, octane and cyclooctane under photoassisted conditions without any organic hydrogen transfer acceptors, giving TOFs of 26-56 using 3 as precatalyst.  相似文献   

20.
Silicon-transition metallic silacyclobutanes CpFe(L2)Si(Me)CH2CH2CH2 [L = CO or Ph2MeP; or L2 = (CO)(Ph2MeP)] have been prepared and their reactions (substitution at Si or Fe, Si—Fe cleavage, or ring-opening) studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号