首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The macrocyclic complexes of Co(II) and Ni(II) having chloride or thiocyanate ions in the axial position have been synthesized and characterized. These complexes are synthesised by the template condensation of o-phenylenediamine or 2,3-butanedionedihydrazone with the appropriate aldehydes in NH4OH solution in the presence of the metal ions, Co(II) and Ni(II). The complexes were characterized by spectroscopic methods (IR, UV-Vis and ESR) and magnetic measurements as well as thermal analysis (TG and DTA). The results obtained are commensurate with the proposed formulae. Spectral studies indicate that these complexes have an octahedral structure. From conductivity measurements the complexes are non-electrolytes. The kinetic of the thermal decomposition of the complexes was studied and the thermodynamic parameters are reported.  相似文献   

2.
《Polyhedron》1987,6(5):1021-1025
Two novel series of complexes of types [La(DAPCH)X2]X and [La(DAPTC)X2]X (DAPCH = a potentially pentadentate ligand derived from 2,6-diacetylpyridine and carbohydrazide; DAPTC = a potentially tridentate ligand derived from 2,6-diacetylpyridine and thiocarbohydrazide; X = Cl, Br or NO3) have been synthesized and characterized by elemental analyses, conductance measurements and IR spectral data. All these complexes contain terminal hydrazinic nitrogen atoms with an unshared electron pair and may take part in nucleophilic condensations. Therefore, the reactions of these complexes with 2,6-diacetylpyridine have also been studied which cause ring closure and formation of macrocyclic ligand complexes. Two types of cyclic products, viz. mononuclear [La(mac)X2]X, [La(mac′)X2]X and binuclear [La2(mac)X4]X2, [La2(mac′)X4]X2 (mac- = macrocyclic ligand derived from DAPCH and 2,6-diacetylpyridine; mac′ = macrocyclic ligand derived from DAPTC and 2,6-diacetylpyridine; X = Cl, Br or NO3) have been isolated by carrying out the reactions by different methods. The IR spectra of these cyclic products are reported.  相似文献   

3.
Metal-mediated condensation of o-phenylenediamine with bisacetylacetone-ethylenediimine yields 14-membered tetraaza macrocyclic six-coordinate complexes of the type [M(mac)Cl2],[M(mac)SO4·H2O] (where M = FeII, CoII and CuII; MAC = macrocyclic ligand formed in the template reaction). The metal ions are coordinated by four azomethine nitrogen atoms bridged by acetylacetone moieties. The electrical conductance magnetic moments, electronic and IR spectral data of all complexes are discussed.  相似文献   

4.
This article describes the synthesis and characterization of several new diorganotin(IV) tetraazamacrocyclic complexes. The template condensation of anthranilic acid and diethylenetriamine with 1,2-dibromoethane or 1,3-dibromopropane in the presence of diorganotin(IV) dichlorides yielded macrocyclic complexes. The geometry and the mode of bonding of the resulting complexes were inferred from elemental analysis, UV-Vis, IR, Direct Analysis in Real Time-mass, (1H, 13C and 119Sn) NMR, and 119mSn Mössbauer spectral studies. These studies suggested that the macrocyclic ligands are tetradentate, coordinating through four nitrogens giving a skew-trapezoidal bipyramidal environment around tin in the [R2Sn(L-1)/(L-2)] (R = Me, n-Bu and Ph; H2L-1/H2L-2 = macrocyclic ligands) complexes. Thermal studies of the complexes were carried out in the temperature range 25–1000°C using thermogravimetry, derivative thermogravimetry, and differential thermal analysis techniques which provided a simple route to nanosized semi conducting SnO2 grains, identified by X-ray diffraction analysis. The particle size of the residue, obtained by pyrolysis of 2, 3, 4 and 5, determined by X-ray line broadening and transmission electron microscope were in the range ~38–48 nm and ~3–20 nm, respectively. The surface morphology of these residues was determined by scanning electron microscopy.  相似文献   

5.
(5,15-Bis(2-thienyl)-and 5,15-diphenyl-3,7,13,17-tetramethyl-2,8,12,18-tetra-n-butyl-21H,23H-porphinato)copper(II) complexes were synthesized and the basicity, absorption spectra (UV-Vis, IR, 1H NMR) of the macrocyclic ligands and the stability of the complexes in AcOH-H2SO4 mixed solvents were studied with the aim to reveal the effect of 2-thienyl substituent on the properties of substituted porphyrins. Data on kinetics were obtained, reaction mechanism of complex dissociation was reasoned, and the effect of functional substitution on the properties of macrocyclic bases and their complexes with copper(II) were determined.  相似文献   

6.
This paper describes synthesis, characterization and application of a series of Cu(II) complexes with a novel 3‐thioxo‐[1,2,4,5]tetrazocane‐6,8‐dione (N4) macrocyclic ligand. The complexes were characterized by physicochemical and spectroscopic techniques, such as UV–visible and IR spectroscopies, molar conductance, magnetic susceptibility measurements, and elemental analysis. The data suggest that the mononuclear Cu(II) complexes have a metal‐to‐ligand mole ratio of 1:1 and that the Cu(II) ions are coordinated with the four nitrogen atoms inside the N4 macrocyclic ring. The experimental anisotropic g‐values indicate that the chloro, nitrato, acetate, and perchlorato complexes have six‐coordinate distorted octahedral behavior, whereas the sulfato complex has five‐coordinate square‐pyramidal geometry. A simple and nontoxic method for preparation of CuO nanoparticles based upon the thermal decomposition of the synthesized Cu(II) complexes has been explored. Finally, the degradation of Rhodamine 6G dye by the catalytic performance of nano‐sized CuO material has been evaluated.  相似文献   

7.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

8.
ILHAN  Salih TEMEL  Hamdi KILIC  Ahmet 《中国化学》2007,25(10):1547-1550
Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1 : 1. The Cu(Ⅱ) complexes are 1 : 2 electrolytes as shown by their molar conductivities (∧m) in DMF at 10^-3 mol·L^-1. Due to the existence of free ions the Cu(Ⅱ) complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.  相似文献   

9.
A new series of copper(II) complexes have been synthesized with macrocyclic ligands having three different donating atoms in the macrocyclic ring. It has been shown that the stereochemistry of complexes is dependent on the coordinated anions. These complexes are characterized by various physicochemical techniques, viz. elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic, 1H NMR and EPR spectral studies. Cyclic voltammetric behavior of the complexes has also been discussed. The observed anisotropic g-values indicate that the chloro and acetato complexes are six-coordinate tetragonal. Whereas the sulfato and nitrato complexes are found to have five-coordinate square-pyramidal and four-coordinate square-planar geometry, respectively.  相似文献   

10.
A series of new 24-membered macrocyclic CoII, NiII, CuII and ZnII complexes of the ligands L1H2 and L2H2 were prepared by the non-template and template methods respectively. The ligand L1H2 was formed by the condensation of pyrazole-3,5-dicarbohydrazide and glyoxal and all attempts to isolate the ligand L2H2 were unsuccessful. These, ligand and transition metal complexes were characterized on the basis of elemental analysis, IR, 1HNMR, UV–Visible, magnetic susceptibility measurements, ESR, conductivity measurements, FAB-mass and thermal analysis. The redox behavior of metal ions in the polyazamacrocyclic ligand field is also studied. Electroreduction of carbon dioxide to carbon monoxide is mainly focused on using polydentate azamacrocyclic ligands with amine and imine functionalities, based on the electrochemical behavior of nickel (II) ion in the macrocyclic territory.  相似文献   

11.
A novel macrocyclic Schiff base ligand (2,5,9,12,14,18-hexaoxo-7,16-dithia-1,3,4,10,11,13-hexaazacycloocta-decane (H6L) with N4S2 coordinating sites was prepared by the reaction of the semicarbazide and thiodiglycolic acid. The transition metal complexes with macrocyclic ligand were synthesized and characterized by elemental analyses, magnetic susceptibility measurements, molar conductance, IR, electronic, and EPR spectral studies. Mass, 1H NMR and IR spectral techniques suggest the structural features of macrocyclic ligand. Magnetic and electronic spectral studies suggest an octahedral geometry of complexes. Electrochemical behaviour of cobalt, nickel and copper complexes were determined by cyclic voltammetry. The cyclic voltammogram of the copper complex at room temperature shows a quasi-reversible peaks for Cu(III)-->Cu(II) and Cu(II)-->Cu(I) couples. The macrocyclic ligand and its complexes show growth inhibitory activity against pathogenic bacteria and plant pathogenic fungi A. niger, A. alternata and P. variotii. Most of the complexes have higher activities than that of free ligand.  相似文献   

12.
《Polyhedron》1988,7(12):1053-1061
7-Carboxymethyl-7,16-diaza-18-crown-6 acid hydrates (LH·H2O) and their copper(II) complexes [CuLX], (X = Cl, Br, NO3, ClO4 and CH3CO2) were obtained. The earlier X-ray investigation of the [CuLCl] complex, as well as the IR and UV-vis spectral evidence for the complexes revealed the inner chelate structure with the six-coordinated copper(II) ion embedded inside the macrocyclic ligand (deformed octahedral, 4+2, N,N, CO2,X,O,O-coordination sphere) and the trans arrangement of the CO2 and X ligands. The spectral data, the conductivity measurements and the chemical properties show the existence of the macrocyclic inclusion cation [CuL]+ and the formulation of the complexes as the [(CuL)+X] inner salts. The magnetic moments of the complexes amount to 1.76–1.83 BM at room temperature and 1.3–0.92 BM at 4.2 K. These results revealed the monomeric form of the complexes with the occurrence of the intermolecular (through space) magnetic super-exchange interactions of copper(II) paramagnetic centres.  相似文献   

13.
The tetradendate macrocyclic ligands, [H2L-1 = 5,12-dioxa-7,14-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,8-diene] and [H2L-2 = 6,14-dioxa-8,16-dimethyl-1,5,9,13-tetraazacyclohexadeca-1,9-diene] have been prepared by the condensation reaction of 1,2-diaminoethane and 1,3-diaminopropane, respectively, with ethyl acetoacetate in methanol at room temperature. The diorganotin(IV) complexes of general formula [R2Sn(L-1)/R2Sn(L-2)] (R = Me, n-Bu and Ph) have been synthesized by template condensation reaction of 1,2-diaminoethane or 1,3-diaminopropane and ethyl acetoacetate with R2SnCl2 (R = Me or Ph) or n-Bu2SnO in 2:2:1 molar ratio at ambient temperature (35 ± 2 °C) in methanol. The solid-state characterization of resulting complexes have been carried out by elemental analysis, IR, recently developed DART-mass, solid-state 13C NMR, 119mSn Mössbauer spectroscopic studies. These studies suggest that in all of the studied complexes, the macrocyclic ligands act as tetradentate coordinating through four nitrogen atoms giving a skew-trapezoidal bipyramidal environment around tin center. Since, the studied diorganotin(IV) macrocyclic complexes are insoluble in common organic solvents, hence good crystals could not be grown for single crystal X-ray crystallographic studies. Thermal studies of all of the studied complexes have also been carried out in the temperature range 0-1000 °C using TG, DTG and DTA techniques. The end product of pyrolysis is SnO2 confirmed by XRD analysis.  相似文献   

14.
Reaction of 1,3-bis(imino)benzenes with a stoichiometric amount of LiAlH4 in THF yields iminoaminobenzenes L1 and L2. Further reaction of iminoaminobenzenes L1 and L2 with an equivalent of AlR3 in toluene affords macrocyclic binuclear aluminum complexes 1a, 1b, and 2a. These macrocyclic aluminum complexes were characterized by 1H NMR, 13C NMR, and IR spectroscopy. The molecular structures of 1a, 1b, and 2a were further confirmed by X-ray crystallography. X-ray diffraction analysis revealed that 1a, 1b, and 2a adopted a distorted tetrahedral geometry around aluminum. These complexes have efficient activities toward ring-opening polymerization of ε-caprolactone in the presence of benzyl alcohol.  相似文献   

15.
The oxovanadium(IV) complexes (I) of the type [VO(L)]SO4 have been prepared using an in-situ method of synthesis with ligands derived from di-2-thienylethanedione with 1,2-diaminobenzene or 2,3-diaminopyridine. These parent complexes have been further reacted with μ-diketones to yield macrocyclic complexes (II) of types [VO(mac)]SO4 (where mac = macrocyclic ligands derived by condensation of amino group of parent complex with μ-diketones), wherein the VO2+ cation acts as a template. Tentative structures of these complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moments and spectral (infrared, electronic and electron spin resonance) data. The oxovanadium(IV) complexes are five coordinated wherein the tetraaza macrocyclic ligands act as tetradentate chelating agents. All the complexes are found to inhibit the infectivity of potato virus X, when checked using the test plant Chenopodium amaranticolor.  相似文献   

16.
Mechanism of electrochemical oxidative polymerization and formation of polymers based on the transition metal complexes are considered. The complexes under study are assumed to have the resonance structures and a highly reactive imino group (–N=CH–) in the macrocyclic ring. IR spectra of the bis(salicylidene)ethylenediamine ligand (H2Salen), [NiSalen] and [PdSalen] monomers, and the respective polymers are examined and used for the experimental substantiation of the proposed mechanism underlying the formation of conducting polymers.  相似文献   

17.
A novel series of N2O2 diazadioxa macrocyclic complexes [MLCl2] (M=Co2+, Ni2+ and Cu2+) have been synthesized with newly derived biologically active ligands (LI-LIV). These ligands were synthesized by the condensation of 1, 6-bis(2-formylphenyl)hexane and 3-subtituted-4-amino-5-hydrazino-1, 2, 4-triazole. The mode of bonding and overall geometry of the complexes have been inferred through IR, EPR, electronic spectral studies, conductivity, magnetic, thermal and electrochemical studies. All the complexes are soluble in DMF and DMSO and are non-electrolytes. All these complexes have been screened for their antibacterial (Escherichia coli, Staphylococus aureus, Salmonella typhi, Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and Cladosporium) by the MIC method. The DNA cleavage study was done by Agarose gel electrophoresis.  相似文献   

18.
Dialkyldithiophosphate derivatives of macrocyclic complexes of Pb(II), having N2S2 potential donors, of the general formula, [Pb(L)S2P(OR)2] (where L = macrocyclic ligands L1, L2, L3, L4 & L5 and R = CH3-, C3H7 n- & C3H7 i-) have been Synthesized from the reactions of [Pb(L)X2] (where X = Cl, NO3, or CH3COO) with sodium dialkyl dithiophosphates in 1:2 molar ratios in THF. Fifteen new derivatives have been synthesized by the combination of five macrocyclic complexes of 14–20 member rings with three different types of dialkyldithiophosphate. These compounds have been characterized by elemental analysis, molar conductance, molecular weight determination, IR, 1H NMR, 13C, and 31P NMR. Molecular weight determinations of these complexes indicate their monomeric nature. An octahedral structure is proposed.  相似文献   

19.
Three new azamacrocylic complexes of divalent transition-metal ions were synthesized by taking Co(II), Ni(II), and Cu(II) metal ions as templates. The macrocyclic ligand (12Z,52Z,54E)-11,12,13,14,15,16,51,52,53,54,55,56-dodecahydro-2,4,6,8-tetraaza-1 (2,4),5(4,2)-pyrimidine-3,7(1,2)-dibenzenacyclooctaphane-16,56-dione was derived from o-phenylenediamine (OPD) and 2-thiobarbituric acid (TBA). All the complexes were fully characterized through spectroscopic techniques and elemental analyses. The structures of the macrocyclic complexes were determined by IR, UV–vis, ESI-MS, TGA, molar conductance, magnetic moment, and electron spin resonance data. On the basis of the above studies, the complexes may be formulated as [MLX2], in which L is a macrocyclic ligand and X = CH3COO. All the macrocyclic complexes were biologically screened to evaluate their antimicrobial efficacy. DNA binding study of two representative complexes was performed by UV–vis titrations.  相似文献   

20.
Reaction of divalent cobalt(II) and trivalent ruthenium(III) salts (NO3, SCN and SO4) with macrocyclic ligands L1, L2 and L3 having N2S2, N4 and N5 core, have been designed and carry out. All these three macrocyclic ligands and their complexes were obtained in pure form. Their structures were investigated by using microanalytical analyses, IR, mass, magnetic moments, electronic and EPR spectral studies. The redox properties of the complexes were also examined by cyclic voltammetry. An interesting feature of complexes is that the relatively large rings of macrocyclic ligands prevent the macrocyclic rings from approaching the metal center as closely as they would, if they were not constrained. So the Ru-N distances are longer than expected due to ring size. Electrochemical studies show that the macrocyclic ligand L1 is more effective electron donors to ruthenium than of L2 and L3. Electronic spectral properties also show that the sulphur donor atom of L1 weakens the ligand field with respect to ligand-to-metal charge-transfer band. However it is expected that second-row transition metal-ligand bonds tend to be weaker than third-row transition metal-ligand bonds. There are well-established examples of reactions in which decreased of reactivity down a triad of transition metals is not observed. These novelties are usually attributed to pi-bonding effects for ligands such as carbon monoxide, solvent effects, or a change in mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号