首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

2.
Novel heteroscorpionate-containing tin and organotin(IV) complexes, [SnRnX3 − n(L)], R = Me, Bun, Ph, or cy; X = Cl, Br or I, n = 0, 1, 2 or 3; L = bis(pyrazol-1-yl)acetate (bpza) or bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), have been synthesized and characterized by spectral (IR, 1H, 13C and 119Sn NMR, 119mSn Mössbauer) and analytical data. In [SnI3(bdmpza)], the ligand is fac-N,N′,O-tridentate, the three iodine atoms thus also fac about the six-coordinate tin(IV) atom. Neutral bpzaH reacts with BunSnCl3, PhSnCl3 and SnCl4 in Et2O in the absence of base, yielding 1:1 adducts [XSnCl3(bpzaH)] (X = R or Cl).  相似文献   

3.
The new sodium bis(2-pyridylthio)acetate ligand, Na[(pyS)2CHCO2], has been prepared in ethanol solution using 2-mercaptopyridine, dibromoacetic acid and NaOH. New mono- and di-organotin(IV) derivatives containing the anionic bis(2-pyridylthio)acetate have been synthesized from reaction between SnRnCl4−n (R = Me, Ph and nBu, n = 1-2) acceptors and Na[(pyS)2CHCO2]. Mono-nuclear complexes of the type {[(pyS)2CHCO2]RnSnCl4−n−1} have been obtained and characterized by elemental analyses, FT-IR, ESI-MS, multinuclear (1H and 119Sn) NMR spectral data and X-ray crystallography. ESI-MS spectra of methanol solution of the complexes show the existence of hydrolysed species. Attempts to crystallize the dimethyltin(IV) derivative (3), from acetonitrile solution yield the dimeric dicarboxylatotetramethyldistannoxane (8), which was characterized by single crystal diffraction analysis.  相似文献   

4.
New mono-, di- and tri-organotin(IV) derivatives containing the neutral bis(2-pyridylthio)methane ligand, [(pyS)2CH2] and tris(2-pyridylthio)methane ligand, [(pyS)3CH] have been synthesized from reaction with SnRnCl4−n (R = Me, nBu, Ph and Cy, n = 1-3) acceptors. Mono-nuclear adducts of the type {[(pyS)2CH2]RnSnCl4−n} and {[(pyS)3CH]RnSnCl4−n} have been obtained and characterized by elemental analyses, FT-IR, ESI-MS, multinuclear (1H and 119Sn) NMR spectral data. The 1H and 119Sn NMR and ESI-MS data suggest for the triorganotin(IV) derivatives a complete dissociation of the compounds in solution. The mono- and di-organotin(IV) derivatives show a greater stability in solution, and their spectroscopic data are in accordance with the existence of six-coordinated RSnCl3N2 or R2SnCl2N2 species.  相似文献   

5.
(Nonafluoro-tert-butyloxy)ethyl tosylate 4 was prepared in 65% yield from nonafluoro-tert-butanol 1 using commercially available reagents. Further reaction of 4 with HNR1R2 (R1 = R2 = H, CH3; R1 = H, R2 = CH3, (CH2)3C8F17, CH2CH2OC(CF3)3) affords the appropriate (CF3)3COCH2CH2NR1R2 amines in 20-69% yields. Improved overall yields of [(CF3)3COCH2CH2]3−nNRn to 1 were obtained by the reaction of (CF3)3CONa 2 and (XCH2CH2)3−nNRn (X = Cl, n = 0, 1, 2, R = CH3; X = CH3SO2O, n = 1, R = CH3SO2) nitrogen mustards and a similar reactive β-substituted ethyl amine. The title amines are mobile colorless liquids and volatile with steam. The bulky fluorous ponytail (CF3)3CO(CH2)2 displays high acidic stability and increases fluorous character almost as much as the classical straight-chain C8F17(CH2)3 ponytail.  相似文献   

6.
The reactions of the heterometallic cluster Cp*IrOs3(μ-H)2(CO)10 with phosphines, isonitriles and pyridine under TMNO activation afforded the substitution products Cp*IrOs3(μ-H)2(CO)10−nLn (n = 1, 2; L = PPh3, P(OMe)3, tBuNC, CyNC or py) in good yields. For the monosubstituted derivatives, the substitution site was exclusively at an osmium atom in an axial position for L = phosphine or phosphite. Spectroscopic evidence suggested the presence of isomers in solution for the PPh3 derivative. In contrast, for L = isonitrile, the ligand occupied an equatorial site. In the disubstituted derivatives, the group 15 ligands were coordinated to two different osmium atoms, one each at an axial and an equatorial site. The isomerism and fluxional behaviour of some of these clusters have also been examined.  相似文献   

7.
Organotin(IV) complexes of [SnR(4−n)Cln] (n = 2, R = Me, nBu; n = 1, R = Ph) react with the bidentate pyridyl ligand 4,4′-di-tert-butyl-2,2′-bipyridine (bu2bpy) to give hexa-coordinated adducts with the general formula [SnR(4−n)Cln(bu2bpy)]. However, the reaction of these organotin(IV) complexes with the corresponding monodentate ligand 4-tert-butylpyridine (bupy) resulted in the formation of the hexa-coordinated complex [SnMe2Cl2(bupy)2] and the penta-coordinated complexes [SnR(4−n)Cln(bupy)] (n = 2, R = nBu; n = 1, R = Ph). Moreover, the reaction of the above organotin(IV) complexes with 4,4′-trimethylenedipyridine (tmdp) yields hexa-coordinated adducts with the general formula [SnR2Cl2(tmdp)] (R = Me, nBu) and the penta-coordinated complex [ClPh3Sn-μ-(tmdp)SnPh3Cl] in the solid state. The resulting complexes have been characterized by multinuclear NMR (1H, 13C, 119Sn) spectroscopy and elemental analysis. NMR data shows that the triphenyltin(IV) adducts are not stable in solution and dissociate to give tetra-coordinated tin(IV) complexes. The X-ray crystal structure determination of [SnMe2Cl2(bu2bpy)] reveals that the tin atom is hexa-coordinated in an octahedral geometry with a trans-[SnMe2] configuration.  相似文献   

8.
Abdeslam Abou  Miguel Yus 《Tetrahedron》2006,62(44):10417-10424
The reaction of 1,n-dichloroalkanes 3a (n=2-6) with an excess of lithium powder and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB; 2.5 mol %) in the presence of different carbonyl compounds [ButCHO, PhCHO, Et2CO, (CH2)4CO, (CH2)5CO, (CH2)7CO, (−)-menthone], in THF at −78 °C leads, after hydrolysis with water, to the expected 1,(n+2)-diols 4, yields being <25% for n=2, 3 and in the range of 45-79% for n=4-6. When the same protocol is applied to 1,n-bromochloroalkanes 3b and 1,n-dibromoalkanes 3c (n=2-6), diols 4 are obtained in general with lower yields.  相似文献   

9.
The modification of bis(pyrazol-1-yl)methane by sulfur or selenium on the methine carbon has been successfully carried out by the reaction of the bis(pyrazol-1-yl)methide anion, prepared in situ by the reaction of bis(pyrazol-1-yl)methane with n-BuLi, with elemental sulfur or selenium. These bis(pyrazol-1-yl)methylthiolate or selenolate anions reacted with Ph2SnCl2 to form new organotin derivatives CH(3,5-Me2Pz)2ESnPh2Cl (Pz = pyrazol-1-yl, E = S (1) or Se (2)), which have been characterized by NMR, IR and elemental analysis. The molecular structure of 2 determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methylselenolate is a bidentate monoanionic κ2-[N,Se] chelating ligand. The treatment of CH(3,5-Me2Pz)2ESnPh2Cl with W(CO)5THF resulted in the decomposition of ligands to yield pyrazole derivative of (3,5-Me2PzH)W(CO)5, while direct treatment of bis(pyrazol-1-yl)methylthiolate or selenolate anions with M(CO)5THF (M = Mo or W) formed their tricarbonyl metal anions . Succedent reaction of these carbonyl metal anions with Ph2SnCl2 or Ph3SnCl yielded heterobimetalic compounds CH(Pz)2EM(CO)3SnPhnCl3−n (n = 2 or 3), which have also been characterized by 1H NMR, IR and elemental analysis. The structure of CH(3,4,5-Me3Pz)2SW(CO)3SnPh3 (8) has been confirmed by X-ray single crystal diffraction, showing that bis(3,4,5-trimethylpyrazol-1-yl)methylthiolate acts as a tridentate, monoanionic κ3-[N,S,N] chelating ligand.  相似文献   

10.
The unusual 1:2 intermediate, generated by the addition of triphenylphosphine (TPP) to dialkyl acetylenedicarboxylates (DAAD) was trapped during the reaction of a Ph3P/RN = C/DMAD binucleophilic system with TFA as an initial proton source in a pseudo-seven-component (7-CR) diastereoselective reaction to give λ5-phosphanylidene bis(2,5-dioxotetrahydro-1H-pyrrole-3-carboxylates) with three stereogenic centers and a phosphorane group in good yields.  相似文献   

11.
Six organophosphine/phosphite stabilized silver(I) methanesulfonates of type [LnAgO3SCH3] (L = Ph3P, n = 1, 2a; n = 2, 2b; n = 3, 2c; L = (EtO)3P; n = 1, 2d; n = 2, 2e; n = 3, 2f) were synthesized by the reaction of silver methanesulfonates with triphenylphosphine or triethylphosphite in dichloromethane under nitrogen atmosphere. These complexes were obtained in high yields and characterized by elemental analysis, 1H-, 13C{H} NMR, IR spectroscopy and thermogravimetric analysis (TGA), respectively. X-ray single crystal analysis reveals that complex 2a is a tetramer [Ph3PAgO3SCH3]4 and complex 2b is a monomer. The thermal stability of 2a has been studied by applying thermogravimetric analysis. It starts to decompose between 50 and 440 °C in a three-step process. The final residue (Ag) is about 20.50%.  相似文献   

12.
Sensitive detection of tetrabromobisphenol A (TBBPA) and its derivatives, a group of emerging toxic contaminants, is highly necessitated in environmental investigation. Herein a novel analytical strategy based on reactive extractive electrospray ionization (EESI) tandem mass spectrometry for detection of tetrabromobisphenol A bis(2-hydroxyethyl ether) (TBBPA-BHEE), tetrabromobisphenol A bis(glycidyl ether) (TBBPA-BGE), tetrabromobisphenol A bis(allylether) (TBBPA-BAE), and tetrabromobisphenol S bis(allylether) (TBBPS-BAE) in industrial waste water samples was developed. Active silver cations (Ag+), generated by electrospraying a silver nitrate methanol solution (10 mg L−1), collides the neutral TBBPA derivatives molecules in the EESI source to form [M + Ag]+ complexes of the analytes under the ambient conditions. Upon collision-induced dissociation (CID), characteristic fragments of the [M + Ag]+ complexes were identified for confident and sensitive detection of the four TBBPA derivatives. Under the optimized experimental conditions, the instrumental limits of detection (LODs) of TBBPA-BHEE, TBBPA-BGE, TBBPA-BAE and TBBPS-BAE were 0.37, 0.050, 0.76, and 4.6 μg L−1, respectively. The linear ranges extended to 1000 μg L−1 (R2 ≥ 0.9919), and the relative standard deviations (RSDs), inter-day variation and intra-day variation were less than 7.8% (n = 9), 10.0% (n = 5), and 14.8% (n = 1 per day for 5 days) for all derivatives. TBBPA derivative manufacturing industrial waste water, river water and tap water samples were fast analyzed with the proposed method. The contents of TBBPA derivatives were various in the collected samples, with the highest 19.9 ± 0.3 μg L−1 of TBBPA-BAE in the waste water samples.  相似文献   

13.
New atom-economical catalytic systems consisting of [CpIrCl2]2/NaOAc (Cp=pentamethylcyclopentadienyl) for the N-alkylation of carbamates and amides using alcohols as alkylating agents under solvent-free conditions have been developed. For example, the reaction of n-butyl carbamate with benzyl alcohol in the presence of [CpIrCl2]2 (5.0 mol % Ir) and NaOAc (5.0 mol %) at 130 °C under the absence of solvent gives n-butyl N-benzylcarbamate in the yield of 94%. The present catalytic system is applicable to not only carbamates but also amides, and only harmless water is produced as co-product.  相似文献   

14.
New triorganotin(IV) derivatives of the general formula R3Sn(Umb) (where, R = Me, n-Bu and Ph; Umb = umbelliferone anion) have been synthesized using sodium salt method. Further, the adducts of the general formula R3Sn(Umb) · phen (where R = Me and Ph; phen = 1,10-phenanthroline) have also been synthesized by the interaction of the triorganotin(IV) derivatives of umbelliferone with 1,10-phenanthroline. The bonding and coordination behavior of these derivatives are discussed on the basis of IR, NMR (1H, 13C and 119Sn), and 119Sn Mössbauer spectroscopic studies. These investigations indicate that umbelliferone acts as a monoanionic bidentate ligand in R3Sn(Umb) coordinating through O(7) and O(1) in the solid-state. These polymeric R3Sn(Umb) derivatives (where R = Me and n-Bu) have been proposed to have a trans-trigonal bipyramidal geometry with the three R groups in equatorial positions, while the axial positions are occupied by a phenolic oxygen and the O(1) atom from the adjacent molecule. A pseudotetrahedral geometry has been suggested for Ph3Sn(Umb). A distorted octahedral geometry around tin has been proposed for R3Sn(Umb) · phen, in which umbelliferone anion acts as a monodentate ligand coordinating through phenolic oxygen O(7). The newly synthesized derivatives have been assayed for their anti-inflammatory, cardiovascular and anti-microbial activities. The average LD50 values >1000 mg kg−1 of these derivatives indicate their safety margin. Among all the compounds tested, Ph3Sn(Umb) · phen has been found to show potent anti-inflammatory activity with low mammalian toxicity and mild hypotensive activity.  相似文献   

15.
The direct alkylation of silyl enol ethers with para-methoxybenzylic alcohols or their corresponding acetates was efficiently catalyzed by Bi(OTf)3 in CH3NO2 as the solvent. The reaction provided the α-benzylated carbonyl compounds in high yields after short reaction times using 1-2.5 mol % of the catalyst. Benzylic acetates other than para-methoxybenzylic acetates also underwent the reaction. High facial diastereoselectivities were observed with acetates derived from chiral α-branched para-methoxybenzylic alcohols. In addition, a catalytic reduction with Et3SiH as the reducing agent is reported.  相似文献   

16.
Overcrowded silanedichalcogenols Tbt(Mes)Si(EH)(E′H), such as silanedithiol (E = E′ = S), hydroxysilanethiol (E = O, E′ = S) and hydroxysilaneselenol (E = O, E′ = Se), bearing an efficient combination of steric protection groups, Tbt and Mes (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl, Mes = 2,4,6-trimethylphenyl), were synthesized and isolated as air- and moisture-stable crystals, and their structures were fully characterized by spectroscopic and elemental analyses together with X-ray crystallographic analyses. The results of IR spectroscopy and the X-ray structural analyses suggested that these compounds exist as monomers without any intra- and intermolecular interactions such as hydrogen bonds even in the solid state and in solution. Novel four-membered-ring compounds, such as Tbt(Mes)Si(μ-S)2PnBbt and [Tbt(Mes)Si(μ-E)(μ-E′)MLn] [E, E′ = O, S, Se; Pn = Sb, Bi; Bbt = 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl; MLn = Pd(PPh3)2, Pt(PPh3)2, Ru(η6-benzene)] were synthesized by utilizing the silanedichalcogenols as key building blocks. The molecular structures of these newly isolated compounds were determined by NMR spectroscopic data together with X-ray crystallographic analyses.  相似文献   

17.
The structure of bis(1,1,3,3-tetramethylguanidinium) dichromate was determined from powder X-ray diffraction data. The compound crystallizes in the monoclinic system (space group P21/n) with a = 10.79714 (15) Å, b = 11.75844 (16) Å, c = 8.15097 (11) Å, β = 109.5248 (6)°. The structure consists of dichromate anions (Cr2O72−) stabilized by tetramethylguanidinium cations ([H2NC(N(CH3)2)2]+ or [TMGH]+). Phase transitions of [TMGH]2Cr2O7 were determined by differential scanning calorimetry, thermal gravimetric analysis and in situ Raman spectroscopy, where the decomposition of the matrix into CrOx was found at 171-172 °C. Further heat treatment to above 400 °C resulted in formation of the thermodynamically stable Cr2O3, most likely with the [TMGH]+ cation as reductant. The catalytic activity of [TMGH]2Cr2O7 supported on TiO2 anatase in the selective catalytic reduction (SCR) of nitrogen oxide was also investigated, however only moderate activity was observed in the temperature range 100-400 °C compared to the activity of e.g., vanadia supported on titania.  相似文献   

18.
Aryl M(κ1-Ar)(CO)nP5−n [M = Mn, Re; Ar = C6H5, 4-CH3C6H4; n = 2, 3; P = P(OEt)3, PPh(OEt)2, PPh2OEt] and Re(κ1-C6H5)(CO)3[Ph2PO(CH2)3OPPh2] complexes were prepared by allowing hydrides MH(CO)nP5−n to react first with triflic acid and then with the appropriate aryl lithium (LiAr) compounds. The complexes were characterized spectroscopically (IR and 1H, 31P, 13C NMR) and by the X-ray crystal structure determination of Re(κ1-C6H5)(CO)3[Ph2PO(CH2)3OPPh2] derivative. Protonation reaction of the aryl complexes with HBF4 · Et2O lead to free hydrocarbons Ar-H and the unsaturated [M(CO)nP5−n]+ cations, separated as solids in the case of [Re(CO)3P2]BF4 derivatives.  相似文献   

19.
Mono and doubly alkynyl substituted ferrocene complexes, [Fc(CH2OCH2CCH)n], 2-3 (2: n = 1; 3: n = 2; Fc = ferrocene) have been synthesized from the room temperature reaction of mono and 1,1′-dihydroxymethyl ferrocene, Fc(CH2OH)n , 1a-b (1a: n = 1; 1b: n = 2) and propargyl bromide, in modest to good yields. These new ferrocene derivatives have been characterized by mass, IR, 1H, 13C NMR spectroscopy, and molecular structures of compound 2 and 3 were unequivocally established by single crystal X-ray diffraction study. The crystal structure analysis revealed that 2 and 3 consist of infinite 1D zig-zag hydrogen bonded chains and 2D microporous hydrogen bonded network of molecules, linked by intermolecular C-H···O hydrogen bonding. The molecular structures of both 2 and 3 are further stabilized by C-H···π interactions.  相似文献   

20.
N-n-Propyl-2-pyridylmethanimine, 1, N-n-octyl-2-pyridylmethanimine, 2, N-n-lauryl-2-pyridylmethanimine, 3, and N-n-octadecyl-2-pyridylmethanimine, 4 have been used in conjunction with copper(II) bromide and azo initiators for the reverse atom transfer radical polymerisation of a range of methacrylates. AIBN to CuIIBr2 ratios of 0.5:1, 0.75:1 and 1:1 give PMMA with Mn 11 500 g mol−1 (PDi = 1.24) (at 22% conversion), 12 500 g mol−1 (PDi = 1.06) (at 83% conversion) and 10 900 g mol−1 (PDi = 1.11) (at 84% conversion), respectively. A CuIIBr2 complex is demonstrated to be needed at the start of the reaction for good control over molecular weight and polydispersity as reactions using Cu(I)Br as catalyst yielded PMMA of Mn 31 000 g mol−1 (PDi = 2.90), reactions with no copper yield PMMA of Mn 33 000 g mol−1 (PDi = 2.95). The RATRP of styrene was carried out using CuIIBr2 as catalyst. AIBN to CuIIBr2 ratio of 0.5:1, 0.75:1 and 1:1 gave PS with Mn = 12 400 g mol−1 (PDi = 1.27) at low conversion, Mn = 15 500 g mol−1 (PDi = 1.11) and 12 400 g mol−1 (PDi = 1.38), respectively at ∼85% conversion. A series of block copolymers of MMA with BMA, BzMA and DMEAMA (15 600 g mol−1 (PDi = 1.18), 13 300 g mol−1 (PDi = 1.14) 15 300 g mol−1 (PDi) = 1.16), using a PMMA macroinitiator were prepared. Emulsion polymerisation of MMA using [initiator]:[Cu(II)Br2] ratio = 0.5:1 with Brij surfactant gave a linear increase of Mn with respect to conversion, final Mn = 112 800 g mol−1 (PDi = 1.42). Further reactions were carried out with [initiator]:[Cu(II)Br2] ratio = 0.75:1 and 1:1. Both giving PMMA with Mn ∼ 32 000 g mol−1 (PDi ∼ 2.4). These reactions exhibit no control, this is because the azo initiator is present in excess and all of the monomer is consumed by a free radical polymerisation as opposed to a controlled reaction. Particle size analysis (DLS) showed the particle size between 160 and170 nm in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号