首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The major complex formed in solution from [[Pd0(dba)2]+1P-N] mixtures is [Pd0(dba)(P-N)] (dba=trans,trans-dibenzylideneacetone; P-N=PhPN, 1-dimethylamino-2-diphenylphosphinobenzene; FcPN, N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]methylamine; OxaPN, 4,4'-dimethyl-2-(2-diphenylphosphinophenyl)-1,3-oxazoline). Each complex consists of a mixture of isomers involved in equilibria: two 16-electron rotamer complexes [Pd0(eta2-dba)(eta2-P-N)] and one 14-electron complex [Pd0(eta2-dba)(eta1-P-N)] observed for FcPN and OxaPN. [Pd0(dba)(PhPN)] and [SPd0(PhPN)] (S solvent) react with PhI in an oxidative addition: [SPd0(PhPN)] is intrinsically more reactive than [Pd0(dba)(PhPN)]. This behavior is similar to that of the bidentate bis-phosphane ligands. When the PhPN ligand is present in excess, it behaves as a monodentate phosphane ligand, since [Pd0(eta2-dba)(eta1-PhPN)2] is formed first by preferential cleavage of the Pd-N bond instead of the Pd olefin bond. [Pd0(eta1-PhPN)3] is also eventually formed. [Pd0(dba)(FcPN)] and [Pd0(dba)(OxaPN)] are formed whatever the excess of ligand used. [SPd0(FcPN)] and [SPd0)(OxaPN)] are not involved in the oxidative addition. The 16-electron complexes [Pd0(eta2-dba)(eta2-FcPN)] and [Pd0(eta2-dba)(eta2-OxaPN)] are found to react with PhI via a 14-electron complex as has been established for [Pd0(eta2-dba)(eta1-OxaPN)]. Once again, the cleavage of the Pd-N bond is favored over that of Pd-olefin bond. This work demonstrates the higher affinity for [Pd0(P-N)] of dba compared with the P-N ligand, and emphasizes once more the important role of dba, which either controls the concentration of the most reactive complex, [SPd0(PhPN)], or is present in the reactive complexes, [Pd0(dba)(FcPN)] or [Pd0(dba)(OxaPN)], and thus contributes to their intrinsic reactivity.  相似文献   

2.
Zerovalent complexes of the type Pd(Ar-BIAN)(alkene), i.e. complexes containing the rigid bidentate nitrogen ligands bis(arylimino) acenaphthene (Ar = p-Tol, p-MeOC6H4, o-Tol,o,o′-Me2C6H3, o,o′-iPr2C6H3) and an electron-poor alkene have been shown to react with a variety of (organic) halides RX, including methyl, benzyl, aryl, acyl and allylic halides, to give the corresponding square planar divalent Pd(R)X(Ar-BIAN) or [Pd(η3-allyl)(Ar-BIAN)]X complexes. The new complexes obtained have been fully characterized and their fluxional behaviour in solution studied by 1H NMR spectroscopy. The rate of oxidative addition of iodomethane to Pd(p-Tol-BIAN)(alkene) complexes was found to decrease with increasing Pd-alkene bond strength, i.e. dimethyl fumarate fumaronitrile, but oxidative addition to the fumaronitrile complex was accelerated by irradiation with a mercury lamp. Oxidative addition of allylic ha  相似文献   

3.
A novel strategy for the diversity-oriented synthesis of multisubstituted olefins, where 2-pyridyldimethyl(vinyl)silane functions as a versatile platform for olefin synthesis, is described. The palladium-catalyzed Heck-type coupling of 2-pyridyldimethyl(vinyl)silanes with organic iodides took place in the presence of Pd2(dba)3/tri-2-furylphosphine catalyst to give beta-substituted vinylsilanes in excellent yields. The Heck-type coupling occurred even with alpha- and beta-substituted 2-pyridyldimethyl(vinyl)silanes. The one-pot double Heck coupling of 2-pyridyldimethyl(vinyl)silane took place with two different aryl iodides to afford beta,beta-diarylated vinylsilanes in good yields. The palladium-catalyzed Hiyama-type coupling of 2-pyridyldimethyl(vinyl)silane with organic halides took place in the presence of tetrabutylammonium fluoride to give di- and trisubstituted olefins in high yields. The sequential integration of Heck-type (or double Heck) coupling and Hiyama-type coupling produced the multisubstituted olefins in regioselective, stereoselective, and diversity-oriented fashions. Especially, the one-pot sequential Heck/Hiyama coupling reaction provides an extremely facile entry into a diverse range of stereodefined multisubstituted olefins. Mechanistic considerations of both Heck-type and Hiyama-type coupling reactions are also described.  相似文献   

4.
Addition of strained olefins, based on norbornene, norbornadiene,benzonorbornadiene or bicyclo [2.2.2] octene skeletons to π-allylic(hexafluoroacetylacetonato) palladium(II) complexes [(π-All)Pd(Hfacac)], gives “enyl” products derived from “insertion” of the olefin into the least substituted terminal allylicpalladium bond. The reaction involves an initial rapid and reversible formation of (gs-allyl)(π-olefin)Pd(Hfacac). The rate-determining step involves migration of a σ-allylic carbon atom from Pd to the coordinated olefin in a concerted cisexo addition of Pd---C across the double bond. Remote electronegative substituents on the olefin do not affect the coordinative ability of the olefin towards Pd. They do however inhibit the migration of the σ-allylic ligand to the coordinated olefin. This observation is interpreted in terms of a small degree of polarization of the π-olefin—Pd bond in the transition state for the σ-allyl migration.  相似文献   

5.
Addition of strained olefins, based on norbornene, norbornadiene,benzonorbornadiene or bicyclo [2.2.2] octene skeletons to π-allylic(hexafluoroacetylacetonato) palladium(II) complexes [(π-All)Pd(Hfacac)], gives “enyl” products derived from “insertion” of the olefin into the least substituted terminal allylicpalladium bond. The reaction involves an initial rapid and reversible formation of (gs-allyl)(π-olefin)Pd(Hfacac). The rate-determining step involves migration of a σ-allylic carbon atom from Pd to the coordinated olefin in a concerted cisexo addition of PdC across the double bond. Remote electronegative substituents on the olefin do not affect the coordinative ability of the olefin towards Pd. They do however inhibit the migration of the σ-allylic ligand to the coordinated olefin. This observation is interpreted in terms of a small degree of polarization of the π-olefin—Pd bond in the transition state for the σ-allyl migration.  相似文献   

6.
Four novel monodentate phosphorus-coordinated palladium(Ⅱ) complexes derived from 3,5-disubstituted-1H-1,2,4-diazaphospholes were developed as efficient catalyst for Mizoroki-Heck reactions of aryl halides with electron-deficient olefins. The role of these monophosphine ligands in catalysis was illustrated by control experiments using Pd salt and ligands as combined catalyst.  相似文献   

7.
The palladium-catalyzed arylation of olefins (the Heck reaction) is one of the most versatile tools for C-C bond formation in organic synthesis. Phosphine ligands are generally used to stabilize the reactive palladium intermediates, the air-sensitivity of phosphine ligands, however, places significant limits on their synthetic applications. Recently, Yang1 and we2 have reported Heck and Suzuki reactions of highly active arenediazonium salts and halides catalyzed by air-stable monothiourea-Pd…  相似文献   

8.
The reactions of a series of Pd(II) methyl compounds of general formula LPd(NCCH(3))CH(3), where L is a bulky phenoxydiazene or phenoxyaldimine ligand with the polar olefin acrylonitrile (AN), are reported. The compounds react with an excess of AN to give the products of 2,1 insertion into the Pd-Me bond, yielding dimers and/or trimers which feature bridging alpha-cyano groups. The reactions were studied by low temperature (1)H NMR spectroscopy, revealing an initial formation of compounds featuring N-bound AN, which isomerized to an (unobserved) pi-bound species that rapidly underwent 2,1 insertion into the Pd-Me bond. Intermediate oligomeric complexes retaining a Pd-Me function were observed at low [AN] in these reactions. Under pseudo first-order conditions, k(obs) values of 8.5 x 10(-5) to 2.68 x 10(-3) M(-1) (-22 degrees C to 10 degrees C, 100 equiv of AN) and activation parameters of DeltaH++ = 14.4(5) kcal mol(-1) and DeltaS++ = -19(5) eu were obtained in one case. Comparison of the overall rates of insertion between two LPd(NCCH(3))CH(3), differing in the overall charge on the supporting ligand L, showed that the complex bearing a negatively charged ligand reacts with AN twice as fast as one with no anionic charge. The rates of insertion in both of these complexes are significantly faster than reported rates for analogous reactions in cationic Pd(II) derivatives, indicating that increasing the negative charge on the complex enhances the rate of AN insertion. These results provide fundamental mechanistic insights into a crucial reaction for incorporation of polar comonomers into alpha olefins via a coordination polymerization mechanism.  相似文献   

9.
S. OaeT. Yagihara  T. Okabe 《Tetrahedron》1972,28(12):3203-3216
Carbodithioic acids react with trivalent sulphur compounds bearing semipolar linkages (sulphoxides, sulphonium ylides and sulphilimines), to give the corresponding sulphides and add to olefins to afford dithioesters. The orientation of olefin addition is controlled by the olefin nature. Michael type addition takes place with olefins bearing an electron-withdrawing group α to the double bond while Markownikoff addition occurs with olefins bearing an electron-donating group. With vinyl and allyl sulphoxides, both addition and reduction took place simultaneously, and new dithioesters were obtained.  相似文献   

10.
The dioxygen complexes (Ph3P)2MO2 (M  Pd, Pt) readily add to electrophilic olefins, such as 1,1-dicyano-olefins, at room temperature, to give cyclic peroxy-adducts in high yield. The adducts undergo thermal decomposition in solution to carbonyl compounds, the reaction proceeding via carboncarbon bond cleavage.  相似文献   

11.
A computational study has been performed to determine the mechanism of the key steps of Pd-catalyzed domino reactions in which C(sp2)-C(sp2) are formed from aryl and alkenyl halides. DFT calculations were done on model complexes of the proposed intermediates, with PH3 and H2O as ancillary ligands, to explore two possible mechanisms: the oxidative addition of aryl or alkenyl halides to palladacycles to give Pd(IV) intermediates, and the transmetalation-type reaction of aryl or alkenyl ligands between two Pd(II) centers, a palladacycle, and a Pd(II) complex formed by oxidative addition of aryl or alkenyl halides to Pd0. We have shown that oxidative addition of iodoethylene to Pd0 precursors is more favorable than oxidative addition to Pd(II) palladacycles, whereas transmetalation-type reactions between Pd(II) complexes are facile. Similar results were obtained with iodobenzene instead of iodoethylene and formamide as the ancillary ligand. These results suggest that Pd(IV) intermediates are not involved in these reactions.  相似文献   

12.
Operationally unsaturated (i.e., 16/18-electron) (PNPR)Re(H)4, where PNPR is N(SiMe2CH2PR2)2, is reactive at 22 degrees C with cyclic olefins. The first observed products are generally (PNPR)Re(H)2(cycloalkylidene), with hydrogenated olefin as the product of hydrogen abstraction from the tetrahydride. The tetrahydride complex with R = tBu generally fails to react (too bulky), that with R = cyclohexyl suffers a (controllable) tendency to abstraction of 3H from one ring, forming an eta3-cyclohexenyl compound, and that with R = iPr generally gives the richest bimolecular reactivity. The cyclic monoolefins studied show distinct reactivity, C6 giving first the carbene and then coordinated cyclohexadiene, C5 giving carbene, then diene, and then eta5-C5H5, C8 giving carbene and then eta2-cyclooctyne, and C12 giving an eta3-allyl. Norbornene gives a pi-complex of the norbornene in thermal equilibrium with its carbene isomer; at 90 degrees C, hydrocarbon ligand Calpha-Cbeta bond cleavage occurs to give, for the first time, a carbyne complex from an internal olefin. Two compounds synthesized here have the formal composition "(PNPR)Re + olefin", and each of these is capable of dehydrogenating the methyl group of a variety of alkanes at 110 degrees C to form (PNP)ReH triple bond (CR).  相似文献   

13.
Palladium-catalyzed direct arylations of benzene have been proposed to occur by the generation of a phosphine-ligated arylpalladium pivalate complex LPd(Ar)(OPiv) and reaction of this complex with benzene. We have isolated an example of the proposed intermediate and evaluated whether this complex does react with benzene to form the biaryl products of direct arylation. In contrast to the proposed mechanism, no biaryl product was formed from cleavage of the benzene C-H bond by LPd(Ar)(OPiv). However, reactions of LPd(Ar)(OPiv) with benzene and additives that displace or consume the phosphine ligand formed the arylated products in good yield, suggesting that a "ligandless" arylpalladium(II) carboxylate complex undergoes the C-H cleavage step. Consistent with this conclusion, we found that reactions catalyzed by Pd(OAc)(2) without a ligand occur faster than, and with comparable selectivities to, reactions catalyzed by Pd(OAc)(2) and a phosphine ligand.  相似文献   

14.
Homogeneous catalysts for olefin polymerization such as metallocene or half-sandwich complexes containing the metals titanium, zirconium and hafnium, or other transition-metal coordination complexes can be functionalized with alkenyl groups and have then the potential to copolymerize with olefins to give heterogeneous catalysts. In a similar manner metallacyclic metallocene complexes with a metal-carbon sigma bond allow the catalytic insertion of olefins into this bond and produce heterogeneous catalysts. It is also possible to functionalize the active species of the cocatalyst methylalumoxane (MAO) and use it for self-immobilization processes. The high excess of MAO that is necessary in homogeneous solution can be reduced by more than 90% with this method.  相似文献   

15.
The mechanism of olefin substitution at palladium(0) has been studied, and the results provide unique insights into the fundamental reactivity of electron-rich late transition metals. A systematic series of bathocuproine-palladium(0) complexes bearing trans-beta-nitrostyrene ligands (ns(X) = X-C(6)H(4)CH=CHNO(2); X = OCH(3), CH(3), H, Br, CF(3)), (bc)Pd(0)ns(X) (3(X)), was prepared and characterized, and olefin-substitution reactions of these complexes were found to proceed by an associative mechanism. In cross-reactions between (bc)Pd(ns(CH)()3) and ns(X) (X = OCH(3), H, Br, CF(3)), more-electron-deficient olefins react more rapidly (relative rate: ns(CF)()3 > ns(Br) > ns(H) > ns(OCH)()3). Density functional theory calculations of model alkene-substitution reactions at a diimine-palladium(0) center reveal that the palladium center reacts as a nucleophile via attack of a metal-based lone pair on the empty pi orbital of the incoming olefin. This orbital picture contrasts that of traditional ligand-substitution reactions, in which the incoming ligand donates electron density into an acceptor orbital on the metal. On the basis of these results, olefin substitution at palladium(0) is classified as an "inverse-electron-demand" ligand-substitution reaction.  相似文献   

16.
The mu-eta(3)-allenyl/propargyldipalladium complexes were synthesized by the reaction of the corresponding eta(1)-allenyl- or eta(1)-propargylpalladium complexes with Pd(2)(dba)(3). The X-ray diffraction analysis indicates that the dinuclear complex has a unique structure, in which two palladium, three carbon, two phosphorus, and one halogen atoms are in the same plane. These dinuclear complexes react with electrophiles, such as HCl or AcCl, at the central carbon of the mu-eta(3)-allenyl/propargyl ligand to give the mu-eta(3)-vinylcarbenedipalladium complexes. Intramolecular reaction proceeded smoothly to give cyclization products quantitatively. Addition of a catalytic amount of a palladium(0) complex dramatically accelerated the carbon-carbon bond formation. The MO calculations on the mu-eta(3)-allenyl/propargyl complexes indicated that the reaction proceeds via orbital control.  相似文献   

17.
Bis(phosphine)-3,3-dimethylnickela- and palladacyclobutanes have been prepared by intramolecular C-H insertion reaction of the corresponding dineopentyl metal complexes. Nickelacyclobutane complexes decompose when heated thereby undergoing competitive carbon-carbon bond cleavage to give isobutene and ethylene, with reductive elimination affording 1,1-dimethylcyclopropane and skeletal isomeri-zation of the metallacyclic ring yielding 3-methyl-1-butene, whereas the palladium analog gave no significant amounts of CC bond cleavage products.Added phos-phine was seen to have an effect on CC bond scission of nickelacyclobutane complexes. Nickelacyclobutane complexes in solution are thought to be in equilibrium with olefin-coordinated nickel-carbene complex on the basis of available experimental evidence from hydrogenolysis, carbene-trap reactions with olefins and reaction with carbon monoxide  相似文献   

18.
New palladium(0) complexes with a variety of coordinated olefins [Pd(olefin)(PMePh2)2] (II) (olefin = styrene, ethyl methacrylate, methyl methacrylate, methyl acrylate, methacrylonitrile, and dimethyl maleate), were prepared by the reactions of [PdEt2(PMePh2)2] (I) with corresponding olefins in toluene. These complexes were characterized by means of elemental analysis, IR and 1H NMR spectroscopy and the chemical reactions. The dissociation of the coordinated olefin from complex II in solution was confirmed by spectroscopic studies of [Pd(mma)(PMePh2)2] (mma = methyl methacrylate). From the variable temperature NMR study, kinetic parameters for the dissociation process were determined as Ea = 7 kcal/mol, and ΔS3 (293 K) = -30 cal/deg · mol. Some new hydrido complexes, [Pd(H)ClL2] (IV) (L = PMePh2, PEtPh2 and PEt2Ph), were prepared by the reactions of [Pd(olefin)L2] with dry HCl.  相似文献   

19.
Vinyl-substituted germanes react stereo- and regioselectively with olefins in the presence of complexes containing Ru-H and Ru-Ge bonds with the formation of functionalized vinylgermanes that cannot be synthesized by olefin cross-metathesis procedures. The reaction opens a new catalytic route for preparation of a class of organogermanes that are potent organometallic reagents for organic synthesis because they show very low toxicity and could replace organotin compounds. The mechanism of this new catalytic route was proven to involve an interesting insertion of the vinylgermane into the Ru-H bond and beta-Ge transfer to the metal with elimination of ethylene and generation of an Ru-Ge bond, followed by insertion of the alkene into the Ru-Ge bond and beta-H transfer to the metal to eliminate the substituted vinylgermane.  相似文献   

20.
The rate of the Pd/C catalyzed Heck coupling of Ar-I with CH(2)=CH-R is accelerated tenfold by the presence of Aliquat 336 (A336), a well known phase transfer catalyst, and an ionic liquid. Both when conducted in A336 as solvent, and in an isooctane/A336/aqueous triphasic mixture, the Heck reaction of aryl iodides with electron deficient olefins, catalyzed by Pd/C, proceeds with high yields and selectivity. When KOH is used instead of Et(3)N, selective formation of the biphenyl rather than the Heck product, is observed. Aryl bromides react more sluggishly, and only the more activated ones undergo the Heck reaction. In the absence of the olefin, aryl halides possessing an electron withdrawing group are reduced to the corresponding Ar-H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号