共查询到11条相似文献,搜索用时 62 毫秒
1.
2.
单原子催化剂(SAC)是由互相隔离分散的原子级活性位点锚定在基底上而形成的一类新兴催化剂材料, 其具有最大化的原子利用率、 可调控的独特电子结构, 因而在热催化、 光催化及电催化等方面展现出良好的应用前景. 通过SAC的热/光/电催化CO2转化反应(CCR)能将温室气体CO2转化为燃料或具有附加值的化学品, 为解决严重的全球变暖和能源短缺问题提供了一种有效策略. 本文总结了近年来SAC在CO2转化领域的研究进展, 讨论了其合成、 调控及催化各类CO2转化反应的优缺点, 并对其未来的发展进行了展望. 相似文献
3.
在以碳中和为目标的全球共识下,太阳能作为一种取之不竭用之不尽的绿色环保能源被认为是替代传统化石燃料最有潜力的方式。在各种太阳能转换技术中,光热催化不仅可以最大化利用太阳能,在光场和热场双重驱动力作用下,还可以显著提升化学反应速率,引起广泛的研究兴趣。以孤立的单个原子均匀分散在载体上形成的单原子催化剂具有100%原子利用率、优异的催化活性、热稳定性等优势。因此,将单原子催化剂应用于光热催化开始受到越来越多的关注。本综述介绍了光催化、热催化和光热催化的基本原理和特征,同时列举一些典型的例子。随后以不同载体作为分类标准,总结了单原子光热催化应用的前沿研究进展。最后,提出了该催化体系所面临的挑战和未来的发展方向。本文旨在全面了解单原子催化剂在太阳能驱动光热催化领域的研究现状并为未来发展提供可行的建议。 相似文献
4.
原子层沉积技术制备单原子催化剂 总被引:1,自引:0,他引:1
贵金属单原子催化剂因具有独特的催化性能和高的利用率而迅速引人关注.原子层沉积(ALD)逐渐成为大批量合成稳定单原子的有力工具.本文总结了采用ALD合成单原子的最新进展,以及未来的研究方向和趋势. 相似文献
5.
Industrial revolution has led to increased combustion of fossil fuels. Consequently, large amounts of CO2 are emitted to the atmosphere, throwing the carbon cycle out of balance. Currently, the most effective method to reduce the CO2 concentration is direct CO2 capture from the atmosphere and pumping of the captured CO2 deep underground or into the mid-ocean. The transformation of CO2 into high-value chemicals is an attractive yet challenging task. In recent years, there has been much interest in the development of CO2 utilization technologies based on electrochemical CO2 reduction, photochemical CO2 reduction, and thermal CO2 reduction, and CO2 valorization has emerged as a hot research topic. In electrochemical CO2 reduction, the cathodic reaction is the reduction of CO2 to value-added chemicals. The anodic reaction should be the oxygen evolution reaction, and water is the only renewable and scalable source of electrons and protons in this reaction. There is a plethora of research on the use of various metals to catalyze this reaction. Among these, Cu-based materials have been demonstrated to show unique catalytic activity and stability for the electrochemical conversion of CO2 to valuable fuels and chemicals. Moreover, the solar-driven conversion of CO2 into value-added chemical fuels has attracted great attention, and much effort is being devoted to develop novel catalysts for the photoreduction of CO2, especially by mimicking the natural photosynthetic process. The key step in the photocatalytic process is the efficient generation of electron-hole pairs and separation of these charge carriers. The efficient separation of photoinduced charge carriers plays a crucial role in the final catalytic activity. Compared with CO2 reduction via electrocatalysis and photocatalysis, thermal reduction is more attractive because of its potential large-scale application in the industry. Heterogeneous nanomaterials show excellent activity in the electrocatalytic, photocatalytic, and thermal catalytic conversion of CO2. However, nanostructured materials have drawbacks on the investigation of the intrinsic activity of the active sites. In recent years, single-site catalysts have become popular because they allow for maximum utilization of the metal centers, show specific catalytic performance, and facilitate easy elucidation of the catalytic mechanism at the molecular level. Accordingly, numerous single-site catalysts were developed for CO2 reduction to produce value-added chemicals such as CO, CH4, CH3OH, formate, and C2+ products. Value-added chemicals have also been synthesized with the aid of amines and epoxides. This review summarizes recent state-of-the-art single-site catalysts and their application as heterogeneous catalysts for the electroreduction, photoreduction, and thermal reduction of CO2. In the discussion, we will highlight the structure-activity relationships for the catalytic conversion of CO2 with single-site catalysts. 相似文献
6.
单原子催化剂具有高原子利用率、高催化活性和高选择性等优点,兼具了均相催化剂“独立活性位点”和非均相催化剂“易循环利用”的特点,有效解决贵金属昂贵稀少的缺陷。其中载体不仅能影响单原子的稳定性,还影响其电子结构,从而影响催化性能。作为一种新型二维无机材料,MXene具有比表面积大、带隙可调、导电性好和螯合位丰富等特点,是制备单原子催化剂的理想载体材料。本文简要总结了MXene的结构特点,综述了MXene基单原子催化剂的制备策略,并着重介绍了MXene基单原子催化剂在电化学能源转换领域的应用,包括析氢反应、氧电极反应、氮还原反应、二氧化碳还原反应,以及在电池储能方面的应用。最后,总结了当前MXene基单原子催化剂在研究和实用方面所面临的挑战与机遇。 相似文献
7.
由于良好的催化活性和稳定性,贵金属催化剂已经被广泛应用于各种异相催化反应中,但是贵金属的稀有性和高成本无法满足未来日益增长的催化需求.2011年,张涛课题组成功地制备了高效、稳定的铂单原子催化剂.高效的单原子催化剂利用单个活性位点作为催化活性中心,可能会成为连接同相催化和异相催化的桥梁.然而从经济适用的长远角度考虑,将非贵金属催化剂缩小到原子尺度是否也会展现出优良的催化活性;是否有潜力替代目前已被广泛应用的贵金属催化剂?虽然现阶段非贵金属催化剂的催化性能仍无法达到贵金属催化剂的标准,但是已有相关研究从理论和实验上报道了非贵金属单原子催化剂及其优异的性能表明了其在未来发展中极其重要,因而,可以预见这两个疑问的答案都是肯定的.单原子概念的出现不仅为提高贵金属的催化性能及成本的降低指明了方向,同时也为制备具有高催化活性、甚至可与贵金属催化剂相媲美的非贵金属催化剂提供了可能性.我们在上述背景下,阐述了对单原子的概念日益加深的机制认知,并从理论和实验上概述了非贵金属单原子催化剂近期的发展情况,指出了目前的在单原子催化剂领域需要解决的一些问题,最后,针对研究现状,我们对未来单原子的发展提出了相应的展望.单原子催化剂具有较高的表面能,因而,如何寻找合适的基体与单原子相互作用,进而,使基体材料像一只手一样稳固地"抓紧"单原子,因而,降低其高表面能则是发挥优良催化性能的基础.强金属–基体相互作用(SMSI)不仅可以将单原子限制在基体表面,亦会影响整个催化过程.目前应用于单原子催化剂的基体种类很多,如金属氧化物、金属以及其他材料,而对SMSI认知则主要分两大类,一类是源自于基体表面的结构缺陷,另一类是源于其电子缺陷.从目前的发展状况来看SMSI机制仍有很多疑惑尚未解决,例如对电子转移影响的认知等.理论研究表明,在某些反应中非贵金属单原子展示出可替代贵金属的催化性质.比如,在一氧化碳优先反应(PROX)中,单原子钴和钛展示出的催化性能可与贵金属相媲美;理论计算同样证明单原子镍在一氧化碳还原中的催化活性比单原子铱优秀,甚至与单原子铂类似.大量的实验进展也报道了非贵金属单原子同样能在其他反应中展现出优异的性能,如氧析出反应(OER)、氢析出反应(HER)和氧还原反应(ORR).对于单原子催化剂,还有很多问题需要我们去解决,例如基体对于催化过程的具体影响、非贵金属的电子结构对于其催化性能的影响,以及单原子在基体上产生相互作用的位点等问题.纵然有许多问题需要更加深入的研究,但是单原子概念的出现,使得非贵金属催化剂材料取代传统贵金属催化剂成为了可能. 相似文献
8.
9.
单原子催化的最新进展 总被引:1,自引:0,他引:1
单原子催化剂由于其自身兼具均相催化剂的"孤立活性位点"和多相催化剂易于循环使用的特点,近年来受到了广泛关注.本综述概括了2015至2016年单原子催化领域的重要进展,重点介绍了新的催化剂制备方法、单原子金催化剂在CO氧化中的进展、单原子钯/铂催化的选择性加氢反应以及铂或非贵金属单原子催化剂在电化学中的应用等.在催化剂的合成方面,用传统的湿化学方法制备的单原子催化剂通常金属负载量较低,使得催化剂的常规表征比较困难.最近发展的一系列新型合成方法例如原子层沉积法、高温蒸汽转移法、光介还原法以及热解法等制备M?N?C等非贵金属催化剂等,尽管有不同程度的局限性,但均可以成功制备高负载量的单原子催化剂.单原子催化剂的载体得到了拓展,除传统的金属氧化物外,金属有机框架材料和二维材料等均被用于单原子催化剂的制备.在单原子催化剂的应用方面,金由于较高的电负性和与氧的弱相互作用能力,因而与氧化物载体作用较弱,不易形成单原子催化剂.但近期报道了成功制备的单原子金催化剂,在CO氧化反应、乙醇脱氢和二烯加氢反应中都有不错的进展.本文还介绍了铂和钯单原子(合金)催化剂在加氢反应中的优异活性及选择性,表明了单原子催化剂在选择性上的优势.将一种金属掺杂到另一种金属基底中制备的单原子合金催化剂也因其特异的性能备受关注.此外,对于化工生产中典型的均相催化反应,如氢甲酰化,单原子催化剂在无外加膦配体的情况下表现出高活性的同时还能很好地控制化学选择性,甚至达到令人满意的区域选择性,从实验上证明了单原子催化剂有望作为沟通均相催化和多相催化的桥梁.单原子催化剂在电催化和光催化中也得到了快速发展.铂单原子催化剂因其高原子利用率和高稳定性,在析氢反应和氧还原反应中有着良好的应用前景.另一方面,非贵金属特别是Co单原子催化剂在光电催化中因其优异的活性和巨大潜力得到了较深入的研究.除了上述进展,单原子催化领域还有许多基本问题需要继续深入研究,对单原子催化剂更加全面透彻的认识将为设计发展新型催化体系,扩展单原子催化领域提供指导和借鉴. 相似文献
10.
单原子催化剂(SACs)具有100%的原子利用率及充分暴露的原子金属活性位点,其催化活性和选择性更具优势,已广泛应用在化学、能源及环境等领域.近年来, SACs在生物医学领域也引起了广泛关注.本文综述了SACs在肿瘤治疗、抗菌、抗氧化和生物传感等生物医学领域的应用及研究进展,并简要总结了SACs未来应用的挑战和机遇,为合理设计多性能的SACs提供了可行策略. 相似文献
11.
金属催化剂的催化活性与其配位不饱和度密切相关,配位不饱和度越高,其催化活性一般也越高。单原子催化剂(SAC,或ad-atom)模型在金属表面上具有最小的配位数,因而往往表现为高的催化活性,但其热稳定性值得深入的研究。在本工作中,我们基于反应力场(ReaxFF),运用LAMMPS(large-scale atomic/molecular massively parallel simulator)软件包进行大尺度分子动力学模拟,研究单原子模型的热稳定性。模拟结果表明,只有Fe1/Fe(100)单原子催化模型可以在较高温度下稳定存在,而其他金属单原子表面分散结构则随温度升高而发生单原子聚集形成大的纳米颗粒或沉降的现象。同时我们也研究了在H2和O2气氛下Ni1/Ni(111)催化剂的动态行为,发现与真空环境相比,H2和O2气氛在一定程度上提高了催化剂的稳定性。 相似文献