共查询到20条相似文献,搜索用时 78 毫秒
1.
报道了一种新型Ag/Ag3PO4/g-C3N4三元复合光催化剂的制备及其半导体界面处的快速载流子分离所引起的光催化活性的显著增强效应。通过X射线衍射,扫描电子显微镜,紫外-可见吸收光谱以及光致发光光谱等就其晶体结构、形貌、组分、光学吸收以及载流子的快速分离行为进行了表征与分析。以罗丹明B作为模型化合物分子,研究发现,所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂在可见光照射下表现出比Ag3PO4以及Ag3PO4/g-C3N4二元催化剂更为优异的光催化活性。研究认为,Ag3PO4表面尺寸约为40 nm的Ag纳米粒子在可见光下受激所产生的等离子表面共振效应以及Ag3PO4与g-C3N4界面处所形成的类似异质结结构对所制备的Ag/Ag3PO4/g-C3N4三元复合光催化剂光催化活性的显著增强起到重要作用。 相似文献
2.
采用原位光沉积-煅烧法制得了Z型α-Fe2O3/g-C3N4异质结复合光催化剂。分别采用透射电子显微镜、X射线衍射、X射线光电子能谱、紫外可见漫反射光谱、荧光光谱以及电化学测试对样品进行了表征,并考察了可见光下光解水产氢活性。结果表明:当α-Fe2O3的负载量为2.9%时,α-Fe2O3/g-C3N4复合光催化剂具有最优的产氢催化活性,产氢速率高达1841.9μmol·g-1·h-1,约为g-C3N4的3.3倍。光催化性能的提高主要归因于3方面:(1)高温煅烧过程中α-Fe2O3的形成,有效促进了氮化碳片层的热剥离,增大了比表面积,从而为光催化反应提供了更多反应活性位;(2)超细α-Fe2O3颗粒(5~8 nm)高度均匀地分散在g-C3N4表面,并且与其紧密结合,形成了高质量的Z型异质结;(3)Z型异质结不仅有效抑制地了光生载流子的复合,同时极大地保留了g-C3N4导带电子的强还原性和α-Fe2O3价带空穴的强氧化性。 相似文献
3.
4.
以三聚氰胺、甲醛、尿素等原料合成具有可塑性的三聚氰胺树脂,通过发泡法构建前驱体支架,并通过磁控溅射法在支架表面沉积金,550℃下热聚合后,成功制备得到负载Au的石墨相氮化碳(Au@g-C3N4)支架,其比表面积可达1 480 m2·g-1。负载6%Au后,Au@g-C3N4支架的紫外吸收光谱在550 nm处出现了新的吸收峰,吸收带边红移至507 nm,禁带宽度缩小至2.45e V,Au@g-C3N4支架荧光强度和阻抗显著降低,光电流从0.28μA·cm-2提升至0.62μA·cm-2。负载Au既拓宽了Au@g-C3N4支架可见光吸收性能,又抑制了电子-空穴对的复合,光催化性能稳定,光催化降解罗丹明B的降解率提高近1倍。此外,Au@g-C3N4支架强度适中,具有一定韧性,在光催化领域应... 相似文献
5.
采用浸渍-煅烧方法将Au引入到g-C3N4纳米片(CNs)与CoWO4复合材料中得到Z型异质结光催化剂Au/CoWO4/CNs(Au/ CoNs-x,x=5、10、20、50)。Au作为电荷传输通道加快了光生电子从CoWO4迁移至CNs的速度。与CoWO4/CNs相比,Au/CoNs-10展示出优异的光催化降解亚甲基蓝和盐酸四环素活性,其表观速率常数分别从0.289和0.360 h-1提升至0.499和0.637 h-1。光电测试与自由基捕获实验表明,Au/CoNs-10光催化性能的显著提升主要是由于Z型异质结的构建降低了光生电子-空穴的复合速率,同时促使具有高氧化活性的羟基自由基(·OH)和超氧自由基(·O2-)的形成。 相似文献
6.
随着全球环境问题日益严重以及能源需求的不断增长,人们对高效环境修复与能源转换技术的需求日益增强.以半导体材料为光催化剂,可将可再生的太阳能转化为化学能,有望成为解决人类面临的能源和环境问题的有效途径.其中,开发高效稳定的光催化剂是该技术得以实际应用的关键.近几十年,研究人员开发出多种半导体材料并应用于光催化研究.其中,具有可见光响应的有机非金属光催化剂石墨相氮化碳(g-C3N4)因其稳定的分子结构,较小的禁带宽度(~2.7 e V)以及合适的能带结构而备受关注.然而,与大多数半导体光催化剂相似,由于传统g-C3N4上的光生电子和空穴极易复合,表面催化活性位点较少,可见光响应范围较窄,使得其催化效率不高.基于g-C3N4独特的有机分子结构,通过引入功能化的特定基团以优化g-C3N4的电子能带结构,促进载流子传输,拓展可见光响应范围,是提高其光催化效率的有效途径.已有研究表明,在各种功能化官能团中,具有强电负性的含氧基团对g-C3N4的Melon单元优化是非常有效的.因此,本文通过g-C3N4与氨基磺酸间的简单固相热反应成功合成了磺酸基功能化的g-C3N4纳米片(SACN),并实现了同步增强的相互作用.根据固体强酸特性,氨基磺酸可以在热处理的辅助下对g-C3N4进行酸刻蚀,从而增加其比表面积以及表面催化活性位点.更重要的是,理论计算与实验表征结果表明,磺酸基团的吸电子诱导效应所产生的电荷驱动力可极大改善g-C3N4的电荷转移动力学,有效抑制了它们的再结合.此外,吸电子诱导效应还可促进g-C3N4的局域电子再分布,进而降低g-C3N4的导带电位,增强光诱导电子的还原能力.光催化性能测试结果表明,SACN-400样品(前驱体中氨基磺酸加入量为400 mg)在光催化分解水制备氢气以及光降解传统污染物领域展现出较好的性能,其在入射光波长为420±15 nm时的产氢表观量子效率为11.03%.综上,本文为设计合成具有较高产氢性能以及污染物降解效率的石墨相氮化碳基光催化剂提供了一种简便有效的策略. 相似文献
7.
利用溶剂热法, 把Bi2WO6纳米颗粒植入g-C3N4层间和表面成功地制备了Bi2WO6/g-C3N4复合型光催化剂。通过XRD、SEM、TEM、BET和UV-Vis分别对样品的结构、组成、形貌、比表面积、光学性能进行了表征。结果表明, g-C3N4层状结构被部分剥离成碎片且与Bi2WO6纳米颗粒形成了复合物。Bi2WO6/g-C3N4复合型光催化剂与单一Bi2WO6相比不仅扩展了可见光的响应范围、增大了比表面还加速了光生电子与空穴的分离。结果表明, Bi2WO6的最佳负载量为60wt%时, 复合型光催化剂具有最高的可见光催化活性且性能稳定、易回收。 相似文献
8.
通过热解-水热两步法制备了石墨烯/石墨相氮化碳/二硫化钼(RGO/g-C_3N_4/MoS_2)复合材料并使用多种分析表征手段对RGO/g-C_3N_4/MoS_2的结构、形貌及光催化性能进行分析。结果表明,具有异质结构的g-C_3N_4/MoS_2与RGO复合后,通过良好的界面接触和电荷的快速转移,增强了其光生电子-空穴的分离。经可见光照射120 min后,RGO/g-C_3N_4/MoS_2复合材料可降解97%亚甲基蓝。此外,循环实验表明RGO/g-C_3N_4/MoS_2复合材料具有良好的稳定性,经5次循环仍能保持93.2%的光催化活性。 相似文献
9.
Fe掺杂g-C3N4的制备及其可见光催化性能 总被引:1,自引:0,他引:1
以硝酸铁和三聚氰胺为原料制备不同含铁量的Fe 掺杂石墨氮化碳(g-C3N4). 采用X 射线衍射光谱(XRD)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FT-IR)光谱、电感耦合等离子体-原子发射光谱(ICP-AES)、荧光(PL)光谱、X光电子能谱(XPS)等分析手段对制备的催化剂进行了表征. 结果表明,铁以离子形式镶嵌在g-C3N4的结构单元中,影响了g-C3N4的能带结构,增加了g-C3N4对可见光的吸收,降低了光生电子-空穴对的复合几率. 以染料罗丹明B的降解为探针反应系统研究了不同含铁量对g-C3N4在可见光下催化性能的影响. 结果表明,m(Fe)/m(g-C3N4)=0.14%时,制备的Fe 掺杂g-C3N4表现出最佳的光催化性能,120 min 内罗丹明B的降解率高达99.7%,速率常数达到0.026 min-1,是纯g-C3N4的3.2 倍. 以叔丁醇、对苯醌、乙二胺四乙酸二钠为自由基(·OH)、自由基(O2-·)和空穴(hVB+)的捕获剂,研究了光催化反应机理. 相似文献
10.
以尿素为原料,引入少量的多壁碳纳米管(CNT)改性,采用简便方法制备CNT/g-C_3N_4催化剂。利用扫描电镜(SEM)、透射电镜(TEM)、傅里叶红外光谱仪(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见-近红外分光光度计(UV-Vis-NIR Spectrophotometer)、荧光光谱(PL)等手段对CNT/g-C_3N_4催化剂进行表征。结果表明,g-C_3N_4与CNT之间的协同作用,影响了gC_3N_4的能带结构,增强了其对可见光的吸收,改善了光生载流子的分布,提高了电子-空穴对的分离效率。并以罗丹明B(RhB)水溶液模拟废水,在可见光下考察催化剂的光催化降解性能,发现当CNT掺杂量为0.1%(w/w)时效果最佳,降解速率常数是体相g-C_3N_4的3.1倍,且研究发现超氧自由基是该体系下的主要活性物种。 相似文献
11.
含有机物工业废水的处理仍然是人类实现可持续发展的重大挑战.而光催化作为一种先进的氧化环保技术,以其反应条件温和、能耗相对较低的优点在有机废水处理中受到越来越多的关注.近年来,人们设计和合成了许多不同结构和形状的光催化剂.特别是金属氧化物半导体以其适宜的能带结构、稳定的物化性质、无毒性等特点已成为光催化降解有机废水的研究热点.此外,一维纳米结构(1D)已被证实有利于光催化降解过程,其优势在于比表面积大,离子的迁移路径短,以及独特的一维电子转移轨道.尤其是TiO2纳米纤维由于其亲水性、特殊的形貌和合适的能带位置,在污染物水溶液的处理中表现出优异的光催化性能.然而,TiO2(~3.2 eV)的宽禁带、光生载流子的易复合等缺陷导致其光利用率较低,限制了其实际应用.因此,人们提出了许多提高光催化活性的策略,如掺杂金属或非金属元素、负载贵金属、构建异质结等.构建梯形(S型)异质结已被证实是提高复合材料光催化活性的一种有前途的策略.S型异质结不仅能有效地分离光生电子和空穴,而且还原能力低的半导体CB上的电子和氧化能力低的半导体VB上的空穴复合,而氧化还原能力较强的空穴和电子分别被保留.因此,这一电子转移过程赋予了复合物最大的氧化还原能力.同时,在g-C3N4中引入硫元素可以拓宽其光吸收范围,从而产生更多的光生载流子.此外,额外的表面杂质将有助于e?-h+对的分离,其光催化活性明显高于单纯的g-C3N4.综合一维纳米结构、硫掺杂和S型异质结的优势,本文采用静电纺丝和煅烧法制备了一系列硫掺杂的g-C3N4(SCN)/TiO2 S型光催化剂.制备的SCN/TiO2复合材料在光催化降解刚果红(CR)水溶液中表现出比纯TiO2和SCN更优越的光催化性能.光催化活性的显著增强是由于一维分布的纳米结构和S型异质结.此外,XPS分析和DFT计算表明,电子从SCN通过SCN/TiO2复合材料的界面转移到TiO2.在模拟太阳光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有最高的氧化还原能力.这些结果通过自由基捕获实验、ESR实验和XPS原位分析得到了充分的验证,说明光催化剂中的电子迁移遵循S型异质结机理.本文不仅可以丰富了新型S型异质结光催化剂的设计和制备方面的知识,并为未来解决环境污染问题提供一个有前景的策略. 相似文献
12.
近年来,随着工业化和城镇化的飞速发展,作为一种典型的空气污染物,NOx已经造成严重的环境问题,甚至威胁到人类的身体健康.为了解决这个问题,科研工作者研发了许多NOx去除技术,其中光催化技术被认为是一种能有效地去除空气中NOx的技术.作为一种廉价、无毒、热稳定性强、能带结构合适的光催化材料,石墨相氮化碳(g-C3N4)能够有效的利用可见光,将NO光催化氧化为NO3^-.但是由于自身的光生载流子复合率较高,光谱响应范围较窄等缺点,g-C3N4不能有效的光催化去除空气中持续流动的低浓度NO,限制了其在光催化领域中的实际应用.因此,有必要合成出高催化活性、高光响应范围的S型复合光催化剂来克服以上光催化材料的不足.为此,我们利用超声辅助法制备了一系列的S型Sb2WO6/g-C3N4复合光催化剂,呈现出优异的光催化活性:与其纯组分相比,所制备的15-Sb2WO6/g-C3N4复合光催化剂在可见光下照射30 min,可去除68%以上的持续流动的NO(初始浓度400 ppb),且五次循环实验后,Sb2WO6/g-C3N4复合光催化剂仍然具备良好的光催化活性和稳定性.透射电子显微镜结果清楚地表明,Sb2WO6颗粒已成功地均匀地负载到g-C3N4纳米片表面.紫外可见漫反射光谱的结果表明,Sb2WO6和g-C3N4的复合可以有效地提高对可见光的吸收能力.与纯g-C3N4样品相比,复合样的吸收带边具有明显的红移.光致发光光谱结果表明,在Sb2WO6/g-C3N4复合半导体中,光生载流子的复合受到抑制.光电流与电阻抗分析可知,与纯Sb2WO6和g-C3N4相比较,在15-Sb2WO6/g-C3N4复合光催化剂中的光生载流子的迁移速率和分离效率较高.通过对样品的能带结构分析并已有参考文献,我们认为Sb2WO6和g-C3N4的接触边界形成了S型异质结,使光生载流子的转移速率更快,改善了光生电子-空穴对分离,而且增强可见光的利用效率,从而提高了光催化性能.自由基捕获实验结果证实,?O2^-主导了Sb2WO6/g-C3N4复合光催化剂去除NO反应,h^+也在一定程度上参与了光催化氧化NO的反应.通过原位红外光谱技术研究了Sb2WO6/g-C3N4光催化NO氧化的反应机理,研究发现,Sb2WO6/g-C3N4复合光催化剂光催化去除是氧诱导的反应.具体反应机理是在可见光的驱动下,光催化剂表面的光生电子会与被吸附的O2反应生成?O2^-,并与光生h^+一起,共同将低浓度的NO光催化氧化为亚硝酸盐或硝酸盐.该研究有助于深入研究光催化氧化NO机理,并为设计高效光催化剂用于光催化氧化ppb级NO提供了一种极具前景的策略. 相似文献
13.
14.
二氧化钛,氧化锌,磷酸铋等传统的紫外光响应光催化剂虽然具有良好的光催化性能,但是对太阳能利用率很低(紫外光只占太阳光能量的4%左右).近年来,类石墨相氮化碳(g-C3N4)受到了广泛的关注.g-C3N4的带隙约2.7 eV,它只能吸收460nm以下的光,对太阳能的利用率依然比较低.构筑异质结是一种有效的提高光催化活性的方法.BiOCl/g-C3N4,TiO2/g-C3N4, Bi2MoO6/g-C3N4, Al2O3/g-C3N4, Ag3PO4/g-C3N4等异质结光催化剂曾被广泛的报道.硫化铋是属于正交晶系的窄带隙半导体,它的带隙约1.3–1.7 e V.由于其独特的电子结构和光学特性,硫化铋在光催化,光检测器和医药成像等领域有着广泛的应用.另外,硫化铋还具有优异的光热转换性能,在光热癌症治疗领域有显著的效果.微波辅助法,水热法,惰性气体下高温煅烧法等都曾被用来合成g-C3N4/Bi2S3异质结光催化剂.不同的文献也提出了不同的催化机理.如何使用更简单环保的方法来合成g-C3N4/Bi2S3异质结光催化剂?电子和空穴的转移路径是怎样的?本文利用简单的低温方法合成了硫化铋,利用超声法得到了g-C3N4/Bi2S3异质结光催化剂,分析了其微观形貌,结构,并探讨了光催化的反应机理和提高光催化性能的因素.X射线衍射,傅里叶变换红外光谱, X射线光电子能谱和透射电子显微镜的结果表明,硫化铋纳米颗粒被成功地引入到g-C3N4中.使用亚甲基蓝为分子探针研究了所制材料在模拟太阳光下的光催化活性.结果发现, CN-BiS-2表现出最佳的光催化活性,是g-C3N4的2.05倍,是Bi2S3的4.42倍.利用液相色谱二级质谱联用分析了亚甲基蓝的降解路径.硫化铋的引入拓展了复合材料的吸收边,使其向可见光区红移,且在整个可见光区的光吸收能力都有明显的增强.光电流的增强和交流阻抗谱圆弧半径的减小,表明光生载流子的迁移与分离速率得到了增强.自由基捕获试验表明,最主要的活性物种是光生空穴,次之是羟基自由基和超氧自由基.在CN-Bi S-2样品中羟基自由基和超氧自由基的电子顺磁共振信号都比g-C3N4有明显的增强,表明复合样品中能够产生更多的羟基自由基和超氧自由基.基于光电流,交流阻抗,荧光光谱,自由基捕获和电子顺磁共振的结果,我们提出了高能电子由硫化铋转移到g-C3N4,同时空穴由g-C3N4转移到硫化铋的电子空穴转移机制.此外,红外热成像的结果表明, g-C3N4/Bi2S3异质结材料具有更强的光热转换能力,从而有利于加速光生载流子分离. 相似文献
15.
人工光合作用可直接将二氧化碳转化为一系列碳氢化合物,实现大气中的碳循环,被视为一种既能解决能源短缺又能减少温室气体,进而改善人类生存环境的新型绿色技术.光催化二氧化碳还原体系需要合适的耦合氧化还原反应,以及对外界光源的有效利用以产生足够电子参与反应,因此构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.此外,二维纳米结构(2D)由于具有比表面积大、离子的迁移路径短以及独特的平层电子转移轨道等特性,被证实有利于光催化还原CO2过程.其中,Bi3NbO7特殊的片层结构和合适的能带位置,使其在光催化还原CO2反应中表现出良好的催化性能.然而,Bi3NbO7的光生载流子易复合及反应中光腐蚀严重等缺陷导致其光利用率较低,限制了其实际应用.因此,构建S-型异质结是提高复合材料光催化活性的一种有前途的策略.S-型异质结不仅能有效地分离光生电子和空穴,而且这一电子转移过程赋予了复合物最大的氧化还原能力.同时,S-型光催化体系不仅拥有同样的强氧化和强还原能力,还可显著抑制副反应的发生及副产物的产生,有利于CO2还原反应的高选择性进行.本文利用简易的溶剂热法制备了一系列S-型Bi3NbO7/g-C3N4(BNO/UCN)异质结光催化剂,与其纯组分催化剂相比,表现出优异的光催化还原CO2活性,g-C3N4含量为80wt%的BNO/UCN-3光催化剂催化CO2生成CH4产率为37.59μmol·g-1h-1,是g-C3N4的15倍,CH4选择性为90%;且循环反应10次后仍保持较高的活性及CH4选择性.光催化活性及选择性的显著增强是由于二维分布的纳米结构和S-型电荷转移路径.在可见光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有较高的氧化还原能力.自由基捕获实验、电子顺磁共振实验和原位X射线光电子能谱实验结果表明,光催化剂中的电子迁移遵循S-型异质结机理.综上,本文不仅为新型S-型异质结CO2还原光催化剂的设计和制备提供了新方法,而且为未来解决能源短缺及实现碳中和目标提供一定的实验及理论依据. 相似文献
16.
过氧化氢(H_2O_2)是一种绿色氧化剂,广泛应用于纺织、印染、造纸和医药等行业.目前,工业上采用蒽醌法制备H_2O_2,它由于需要多步加氢和氧化处理,因此能耗非常大.研究发现,采用贵金属催化剂可以将氢气和氧气直接合成H2O2,但催化剂价格过高,且反应本身存在爆炸风险.近年来,半导体光催化合成H_2O_2受到广泛关注.研究发现,在水存在下,光电子可以将氧气还原得到H_2O_2.介质阻挡放电(DBD)等离子体广泛应用于材料合成、挥发性有机物处理、汽车尾气净化和材料表面处理等.石墨相氮化碳(g-C_3N_4)是新型非金属光催化剂,以其性质稳定、能带适中和制备方便等优点而广受青睐.然而g-C_3N_4的比表面积和电荷分离效率较低,大大限制了其应用.本文采用DBD等离子体法在氢气气氛下制备了N空穴掺杂的石墨相氮化碳,采用XRD,N_2吸附,UV-Vis,SEM,TEM,XPS,EIS,EPR,O_2-TPD及PL等方法对催化剂进行了表征,并考察了N空穴对催化剂结构性质、光学性质及光催化合成H_2O_2性能的影响.结果显示,当DBD等离子体处理时间小于30 min时,所制催化剂颗粒尺寸显著小于焙烧法得到的,因而其比表面积显著提高.N空穴的引入降低了催化剂的能带,提高了可见光区的吸收.此外,N空穴作为反应活性位,既能吸附反应物氧气分子,又能捕获光电子并促进光电子从催化剂向氧气分子转移,进而发生后续还原反应.等离子体处理30 min得到的催化剂光催化合成H_2O_2性能最佳,是纯g-C_3N_4的11倍.本文为g-C_3N_4基催化剂的制备提供了一个新方法. 相似文献
17.
Photocatalytic reduction of CO2 to hydrocarbon compounds is a promising method for addressing energy shortages and environmental pollution. Considerable efforts have been devoted to exploring valid strategies to enhance photocatalytic efficiency. Among various modification methods, the hybridization of different photocatalysts is effective for addressing the shortcomings of a single photocatalyst and enhancing its CO2 reduction performance. In addition, metal-free materials such as g-C3N4 and black phosphorus (BP) are attractive because of their unique structures and electronic properties. Many experimental results have verified the superior photocatalytic activity of a BP/g-C3N4 composite. However, theoretical understanding of the intrinsic mechanism of the activity enhancement is still lacking. Herein, the geometric structures, optical absorption, electronic properties, and CO2 reduction reaction processes of 2D/2D BP/g-C3N4 composite models are investigated using density functional theory calculations. The composite model consists of a monolayer of BP and a tri-s-triazine-based monolayer of g-C3N4. Based on the calculated work function, it is inferred that electrons transfer from g-C3N4 to BP owing to the higher Fermi level of g-C3N4 compared with that of BP. Furthermore, the charge density difference suggests the formation of a built-in electric field at the interface, which is conducive to the separation of photogenerated electron-hole pairs. The optical absorption coefficient demonstrates that the light absorption of the composite is significantly higher than that of its single-component counterpart. Integrated analysis of the band edge potential and interfacial electronic interaction indicates that the migration of photogenerated charge carriers in the BP/g-C3N4 hybrid follows the S-scheme photocatalytic mechanism. Under visible-light irradiation, the photogenerated electrons on BP recombine with the photogenerated holes on g-C3N4, leaving photogenerated electrons and holes in the conduction band of g-C3N4 and the valence band of BP, respectively. Compared with pristine g-C3N4, this S-scheme heterojunction allows efficient separation of photogenerated charge carriers while effectively preserving strong redox abilities. Additionally, the possible reaction path for CO2 reduction on g-C3N4 and BP/g-C3N4 is discussed by computing the free energy of each step. It was found that CO2 reduction on the composite occurs most readily on the g-C3N4 side. The reaction path on the composite is different from that on g-C3N4. The heterojunction reduces the maximum energy barrier for CO2 reduction from 1.48 to 1.22 eV, following the optimal reaction path. Consequently, the BP/g-C3N4 heterojunction is theoretically proven to be an excellent CO2 reduction photocatalyst. This work is helpful for understanding the effect of BP modification on the photocatalytic activity of g-C3N4. It also provides a theoretical basis for the design of other high-performance CO2 reduction photocatalysts.
相似文献
18.
在空气中直接加热三聚氰胺和氧化石墨烯(GO)的混合物制备了g-C3N4/rGO杂化催化剂.实验结果表明,混合物中的g-C3N4保留了石墨型氮化碳原始的特征结构, g-C3N4和还原的氧化石墨烯(rGO)之间的异质结主要通过π-π作用构筑.当原料中三聚氰胺/GO的质量比是800/1时,所得催化剂对罗丹明B的催化作用最强,其一阶动力学常数是纯g-C3N4的2.6倍.这种强化作用主要是由于rGO促进了光生电子-空穴对的分离.此外, g-C3N4/rGO还表现出显著的pH值敏感特性,催化降解速率随pH的降低而增加.当pH =1.98时,其一阶动力学常数是纯g-C3N4的8.6倍.这是由于酸性条件下质子(H+)消耗掉光生电子,促进了空穴对罗丹明B的氧化作用,其中rGO充当了一个快速的光生电子转移平台. 相似文献
19.
ZHAO Weifeng HAO Ning ZHANG Gai MA Aijie CHEN Weixing ZHOU Hongwei YANG Dong XU Ben Bin KONG Jie 《高等学校化学研究》2020,36(6):1265-1271
An in situ strategy was introduced for synthesizing carbon modified graphitic carbon nitride(g-C3N4) by using urea/4-aminobenzoic acid(PABA) co-crystal(PABA@Urea) as precursor materials. Via co-calcination of the PABA co-former and the urea in PABA@Urea co-crystals, C guest species were generated and compounded into g-C3N4 matrix in situ by replacing the lattice N of the carbon nitride and forming carbon dots onto its layer surface. The carbon modification dramatically enhanced visible-light harvesting and charge carrier separation. Therefore, visible light photo-catalytic oxidation of methylene blue(MB) pollution in water over the carbon modified g-C3N4(C/g-C3N4) was notably improved. Up to 99% of methylene blue(MB) was eliminated within 60 min by the optimal sample prepared from the PABA@Urea co-crystal with a PABA content of 0.1%(mass ratio), faster than the degradation rate over bare g-C3N4. The present study demonstrates a new way to boost up the photocatalysis performance of g-C3N4, which holds great potential concerning the degradation of organic dyes from water. 相似文献
20.
光催化完全分解水制氢是一个在粉末颗粒中实现多个串行物理化学步骤的复杂反应过程.这一过程在理论上具有体系简单、成本低、易操作等特点.然而,单步光激发系统中通常存在严重的光生载流子复合,这极大地制约了光催化的整体效率.利用能带结构不同的半导体合理构建异质结催化剂被认为是解决这一难题的重要途径之一.特别是近年来,S型异质结概念的提出为设计异质结结构以及分析不同半导体之间的载流子迁移问题提供了新的思路.本文以小粒径BiVO4/Bi0.6Y0.4VO4(BYV)为研究对象,首先利用"共沉淀-晶化"的方法制备了BYV固溶体纳米颗粒,随后利用压力诱导固溶体中四方相钒酸铋结构转变为单斜相,从而构建了BiVO4/Bi0.6Y0.4VO4复合光催化剂.XRD,Raman,HRTEM,HAADF-EDS的结果表明,经过高压后处理的BYV固溶体表面会出现粒径约为5 nm单斜钒酸铋纳米颗粒,实现了原位构建异质结结构.随后载流子动力学的相关表征以及Au选择性光沉积的结果表明,在光照条件下,所构建异质结中的光生电子主要分布在BYV固溶体上,而在表面形成的单斜相钒酸铋颗粒主要起到了类似"空穴"捕获的作用.这种在异质结中的载流子迁移路径符合S型异质结机理.电化学、稳态荧光光谱以及瞬态荧光光谱的表征结果表明,相比于单一固溶体,在S型异质结这种两步激发系统中所存在的载流子迁移路径能够大幅促进光生载流子分离,从而提高了小粒径BYV的光催化完全分解水性能.综上,构建S型异质结是一种解决小粒径光催化剂中载流子分离能力差的有效途径.同时,压力诱导材料晶型转变实现原位构建异质结的制备方法也为提高光生载流子分离效率提供了新的研究思路与机遇. 相似文献