首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Squaraines are fluorescent, near-IR dyes with promising photophysical properties for biomedical applications. A limitation with these dyes is their inherent reactivity with nucleophiles, which leads to loss of the chromophore. Another drawback is their tendency to form nonfluorescent aggregates in water. Both problems can be greatly attenuated by encapsulating the dye inside an amide-containing macrocycle. In other words, the squaraine becomes the thread component in a Leigh-type rotaxane, a permanently interlocked molecule. Two new rotaxanes are described: an analogue with four tri(ethyleneoxy) chains on the squaraine to enhance water solubility, and a rotaxane that has an encapsulating macrocycle with transposed carbonyl groups. An X-ray crystal structure of the latter rotaxane shows that the macrocycle provides only partial protection of the electrophilic cyclobutene core of the squaraine thread. The stabilities of each compound in various solvents, including serum, were compared with a commercially available cyanine dye. The squaraine rotaxane architecture is remarkably resistant to chemical and photochemical degradation, and likely to be very useful as a versatile fluorescent scaffold for constructing various types of highly stable, near-IR imaging probes.  相似文献   

2.
Baumes JM  Murgu I  Oliver A  Smith BD 《Organic letters》2010,12(21):4980-4983
Rates of cycloreversion for squaraine rotaxane mono(endoperoxides) were enhanced by structural modifications that increased cross-component steric destabilization of the inward directed 9,10-anthracene endoperoxide group. The largest rate enhancements were obtained when the surrounding macrocycle contained two 2,6-pyridine dicarboxamide bridging units, which induced a cavity contraction effect. The precursor fluorescent, near-IR, squaraine rotaxanes are effectively photostable because the mono(endoperoxide) products, formed by reaction with photogenerated singlet oxygen, rapidly cyclorevert back to the original squaraine rotaxane.  相似文献   

3.
A mechanically interlocked squaraine rotaxane is comprised of a deep‐red fluorescent squaraine dye inside a tetralactam macrocycle. NMR studies show that Cl? binding to the rotaxane induces macrocycle translocation away from the central squaraine station, a process that is completely reversed when the Cl? is removed from the solution. Steady‐state fluorescence and excited‐state lifetime measurements show that this reversible machine‐like motion modulates several technically useful optical properties, including a three‐fold increase in deep‐red fluorescence emission that is observable to the naked eye. The excited states were characterized quantitatively by time‐correlated single photon counting, femtosecond transient absorption spectroscopy, and nanosecond laser flash photolysis. Cl? binding to the rotaxane increases the squaraine excited singlet state lifetime from 1.5 to 3.1 ns, and decreases the excited triplet state lifetime from >200 to 44 μs. Apparently, the surrounding macrocycle quenches the excited singlet state of the encapsulated squaraine dye and stabilizes the excited triplet state. Prototype dipsticks were prepared by adsorbing the lipophilic rotaxane onto the ends of narrow, C18‐coated, reverse‐phase silica gel plates. The fluorescence intensity of a dipstick increased eighteen‐fold upon dipping in an aqueous solution of tetrabutylammonium chloride (300 mM ) and was subsequently reversed by washing with pure water. It is possible to develop the dipsticks for colorimetric determination of Cl? levels by the naked eye. After dipping into aqueous tetrabutylammonium chloride, a dipstick’s color slowly fades at a rate that depends on the amount of Cl? in the aqueous solution. The fading process is due primarily to hydrolytic bleaching of the squaraine chromophore within the rotaxane. That is, association of Cl? to immobilized rotaxane induces macrocycle translocation and exposure of the electrophilic C4O2 core of the squaraine station, which is in turn attacked by the ambient moisture to produce a bleached product.  相似文献   

4.
Pseudorotaxane complexes of squaraine dyes and tetralactam macrocycles are converted into permanently interlocked rotaxane structures using copper-catalyzed and copper-free cycloaddition reactions with bulky stopper groups. The photophysical properties of the encapsulated squaraine depend on the structure of the macrocycle. In one case, squaraine rotaxanes are produced in near-quantitative yields and with intense near-IR fluorescence. In another case, squaraine fluorescence is greatly diminished upon macrocyclic encapsulation but the signal can be restored by dye displacement with anions.  相似文献   

5.
Hsueh SY  Lai CC  Liu YH  Wang Y  Peng SM  Chiu SH 《Organic letters》2007,9(22):4523-4526
The photophysical properties and chemical stability of a squaraine derivative were enhanced after using Na+ ions to template a high-yield slippage synthesis of a [2]rotaxane from the dye and a molecular cage.  相似文献   

6.
The structural dynamics of two pairs of [2]rotaxanes were compared using variable-temperature NMR. Each rotaxane had a surrounding tetralactam macrocycle with either 2,6-pyridine dicarboxamide or isophthalamide bridging units. Differences were observed in two types of rotational processes: spinning of the phenylene wall units in the surrounding macrocycle of squaraine rotaxanes and macrocycle pirouetting in xanthone rotaxanes. The rotaxanes with macrocycles containing 2,6-pyridine dicarboxamide bridges exhibited higher rotational barriers due to a cavity contraction effect, which disfavored macrocycle breathing.  相似文献   

7.
On the basis of formation of [2]pseudorotaxane complexes between triptycene‐derived tetralactam macrocycles 1 a and 1 b and squaraine dyes, construction of squaraine‐based [2]rotaxanes through clipping reactions were studied in detail. As a result, when two symmetrical squaraines 2 d and 2 e were utilized as templates, two pairs of isomeric [2]rotaxanes 3 a – b and 4 a – b as diastereomers were obtained, owing to the two possible linking modes of triptycene derivatives. It was also found, interestingly, that when a nonsymmetrical dye 2 g was involved, there existed simultaneously three isomers of [2]rotaxanes in one reaction due to the different directions of the guest threading. The 1H NMR and 2D NOESY NMR spectra were used to distinguish the isomers, and the yield of [2]rotaxane 5 a with the benzyl group in the wider rim of the host 1 a was found to be higher than that of another isomer 5 b with an opposite direction of the guest, which indicated the partial selection of the threading direction. The X‐ray structures of 3 b and 4 a showed that, except for the standard hydrogen bonds between the amide protons of the hosts and the carbonyl oxygen atoms of the guests, multiple π???π stacking and C? H???π interactions between triptycene subunits and aromatic rings of the guests also participated in the complexation. Crystallographic studies also revealed that the [2]rotaxane molecules 3 b and 4 a further self‐assembled into tubular structures in the solid state with the squaraine dyes inside the channels. In the case of 4 a , all the nonsymmetrical macrocyclic molecules pointed in one direction, which suggests the formation of oriented tubular structures. Moreover, it was also found that the squaraines encapsulated in the triptycene‐derived macrocycles were protected from chemical attack, and subsequently have potential applications in imaging probes and other biomedical areas.  相似文献   

8.
Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes   总被引:1,自引:0,他引:1  
A squaraine dye with bulky end groups is employed as the thread component in two Leigh-type amide rotaxanes. The rotaxanes are synthesized in a simple two-step process. X-ray crystal structures of the rotaxanes show that the pyridyl-containing macrocycle is more rigid and wraps more tightly around the cyclobutene core of the squaraine thread compared to the isophthalamide-containing macrocycle. The rotaxanes exhibit photophysical properties that are similar to the precursor squaraine. The encapsulating macrocycle greatly increases the chemical stability of the squaraine thread and inhibits aggregation-induced broadening of its absorption spectrum. It should be possible to prepare squaraine-derived rotaxanes with improved properties for a wide range of photophysical, photochemical, and biomedical applications.  相似文献   

9.
以一种方酸菁染料、水溶性石墨烯和聚乙烯醇为原料,设计合成了在近红外区具有强荧光(660~665 nm)特性及良好的光热稳定性的方酸菁/聚乙烯醇二元和方酸菁/石墨烯/聚乙烯醇三元高分子材料;与在水中相比,方酸菁染料在聚乙烯醇中的最大紫外-可见吸收和荧光波长红移,荧光强度和光稳定性大幅提高;石墨烯的存在增强了材料的光稳定性。  相似文献   

10.
Unusual behavior of indolenine and hydroxyphenyl squaraines has been observed in solution capillary layers and adsorbed films. The confined solutions showed anomalous aggregation of squaraine molecules in contrast to their monomer behavior in the bulk solutions of the same concentration, along with formation of a macroscopic cell-like structure in the confined solution layer, with the diameter of cells being 3-5 microm. The aggregate structure, as observed through electronic absorption spectra, was strongly dependent on the chemical structure of squaraine used and solvent used, and it also was different from squaraine aggregates observed in aqueous solutions and films prepared by vacuum evaporation. It has been found that indolenine squaraine is capable of forming H-aggregates in confined dimethylformamide solutions and hydroxyphenyl squaraine is capable of forming J-aggregates in confined dimethylformamide solutions and adsorbed films. The results were compared with pseudoisocyanine, which forms J-aggregates in aqueous bulk solutions readily; however, no J-aggregates have been found in their capillary layers. The interplay of dye-dye, dye-surface, and dye-solvent interactions resulting in the above effects is discussed.  相似文献   

11.
First rotaxane having tert-ammonium axle was prepared from tert-ammonium salt axle and dibenzo-24-crown-8-ether (DB24C8) wheel, suggesting that tert-ammonium salt axle forms the corresponding threaded complex with a crown ether. Same rotaxane was obtained quantitatively by N-methylation of sec-ammonium-type rotaxane. The tert-ammonium-type rotaxane was neutralized with amine base to tert-amine-type rotaxane in 100% yield, indicating the first isolation of ‘nonionic’ amine-type rotaxane. The reversible protonation and deprotonation of tert-amine-type rotaxane were achieved.  相似文献   

12.
This paper describes the self-assembly of a heterosupramolecular system consisting of a tripodal [2]rotaxane adsorbed at the surface of a titanium dioxide nanoparticle. The tripodal [2]rotaxane consists of a dumbbell-shaped molecule, incorporating two electron-poor viologens, threading an electron-rich crown ether. The [2]rotaxane also incorporates a bulky tripodal linker group at one end and a bulky stopper group at the other end. The [2]rotaxane is adsorbed, via the tripodal linker group, at the surface of a titanium dioxide nanoparticle. The structure and function of the resulting hetero[2]rotaxane have been studied in detail by (1)H NMR spectroscopy and cyclic voltammetry. A key finding is that it is possible to electronically address and switch the above hetero[2]rotaxane.  相似文献   

13.
A thermoresponsive rotaxane shuttling system was developed with a trichloroacetate counteranion of an ammonium/crown ether-type rotaxane. Chemoselective thermal decomposition of the ammonium trichloroacetate moiety on the rotaxane yielded the corresponding nonionic rotaxane accompanied by a positional change of the crown ether on the axle. The rotaxane skeleton facilitated effective dissociation of the acid, markedly lowering the thermal decomposition temperature.  相似文献   

14.
A fifteen-year riddle has been settled: neutralization, the most popular chemical event, of a crown ether/sec-ammonium salt-type rotaxane has been achieved and a completely nonionic crown ether/sec-amine-type rotaxane isolated. A [2]rotaxane was prepared as a typical substrate from a mixture of dibenzo[24]crown-8 ether (DB24C8) and sec-ammonium hexafluorophosphate (PF(6)) with a terminal hydroxy group through end-capping with 3,5-dimethylbenzoic anhydride in the presence of tributylphosphane as a catalyst in 90% yield. A couple of approaches to the neutralization of the ammonium rotaxane were investigated to isolate the free sec-amine-type rotaxane by decreasing the degree of thermodynamic and kinetic stabilities. One approach was the counteranion-exchange method in which the soft counterion PF(6)(-) was replaced with the fluoride anion by mixing with tetrabutylammonium fluoride, thus decreasing the cationic character of the ammonium moiety. Subsequent simple washing with a base allowed us to isolate the free sec-amine-type rotaxane in a quantitative yield. The other approach was a synthesis based on a protection/deprotection protocol. The acylation of the sec-ammonium moiety with 2,2,2-trichloroethyl chloroformate gave an N-carbamated rotaxane that could be deprotected by treating with zinc in acetic acid to afford the corresponding free sec-amine-type rotaxane in a quantitative yield. The structure of the free sec-amine-type rotaxane was fully confirmed by spectral and analytical data. The generality of the counteranion-exchange method was also confirmed through the neutralization of a bisammonium-type [3]rotaxane. The mechanism was studied from the proposed potential-energy diagram of the rotaxanes with special emphasis on the role of the PF(6)(-) counterion.  相似文献   

15.
The development of methods to transport peptides into cells via a passive mechanism would greatly aid in the development of therapeutic agents. We recently demonstrated that an impermeable fluoresceinated pentapeptide enters the cytoplasm and nucleus of COS 7 cells in the presence of a host-[2]rotaxane by a mechanism that does not depend on an active cell-mediated process. In this report, we further investigate the ability of the host-[2]rotaxane to deliver peptides possessing a wide range of polarities (negatively charged, positively charged, polar, and apolar side chains) into live cells. Only in the presence of the host-[2]rotaxane were the Fl-peptides taken up by COS 7 and ES2 cells. Flow cytometry experiments demonstrated that the level of delivery is largely temperature and adenosine 5'-triphosphate (ATP) independent, and the membranes remain intact. Although the level of transport does depend upon the nature of the side chains, it does not correlate with calculated LogD values, indicating that an additional interaction with the host-[2]rotaxane is modifying the permeability properties of the peptide. The amount of Fl-peptides transported from an aqueous phase into a chloroform phase in the presence of the host-[2]rotaxane correlates with the intensity of cellular fluorescence. Extraction and U-tube studies show that the Fl-peptide can be released from its complex with the host-[2]rotaxane into an aqueous phase, and the host-[2]rotaxane can transport a greater than a stoichiometric amount of an Fl-peptide through a CHCl3 layer. These studies demonstrate the utility of the host-[2]rotaxane in delivering peptides of all polarities across a cell membrane.  相似文献   

16.
A host-[2]rotaxane was constructed by converting a diaminophenylcalix[4]arene into a [2]rotaxane using the DCC-rotaxane method (Zehnder, D.; Smithrud, D. B. Org. Lett. 2001, 16, 2485-2486). N-Ac-Arg groups were attached to the dibenzo-24-crown-8 ring of the rotaxane to provide a convergent functional group. To demonstrate the advantage provided by the rotaxane architecture for recognition of guests that contain a variety of functional groups, association constants (K(A)) for N-Ac-Trp, indole, N-Ac-Gly, fluorescein, 1-(dimethylamino)-5-naphthalenesulfonate, and pyrene bound to the [2]rotaxane were determined by performing (1)H NMR and fluorescence spectroscopic experiments. The host-[2]rotaxane had the highest affinity for fluorescein with a K(A) = 4.6 x 10(6) M(-)(1) in a 98/2 buffer (1 mM phosphate, pH 7)/DMSO solution. A comparison of K(A) values demonstrates that both the aromatic pocket and ring of the host-[2]rotaxane contribute binding free energy for complexation. Association constants were also derived for the same guests bound to the diaminophenylcalix[4]arene and to a diphenylcalix[4]arene that contained arginine residues displayed in a nonconvergent fashion. The host-[2]rotaxane provides higher affinity and specificity for most guests than the host with divergent N-Ac-Arg groups of the one that only has an aromatic pocket. For example, the K(A) for the complex of the host-[2]rotaxane and fluorescein in the DMSO/water mixture is more than 2 orders of magnitude greater than association constants derived for the other hosts.  相似文献   

17.
Eight fluorescent squaraine rotaxanes with deep-red absorption/emission wavelengths were prepared and assessed for chemical stability and suitability as water-soluble, fluorescent tracers. The most stable squaraine rotaxanes have four large stopper groups attached to the ends of the encapsulated squaraine, and two members of this structural class have promise as highly fluorescent tracers with rapid renal clearance and very low tissue uptake in living mice.  相似文献   

18.
A [c2]daisy chain rotaxane with two diarylacetylene cores was efficiently synthesized in 53 % yield by capping a C2-symmetric pseudo[2]rotaxane composed of two diarylacetylene-substituted permethylated α-cyclodextrins (PM α-CDs) with aniline stoppers. The maximum absorption wavelength of the [c2]daisy chain rotaxane remained almost unchanged in various solvents, unlike that of the stoppered monomer, indicating that the two independent diarylacetylene cores were insulated from the external environment by the PM α-CDs. Furthermore, the [c2]daisy chain rotaxane exhibited fluorescence emission derived from both diarylacetylene monomers and the excimer, which implies that the [c2]daisy chain structure can undergo contraction and extension. This is the first demonstration of a system in which excimer formation between two π-conjugated molecules within an isolated space can be controlled by the unique motion of a [c2]daisy chain rotaxane.  相似文献   

19.
The synthesis and anion-recognition properties of two new porphyrin-functionalised [2]rotaxane host molecules are described. The rotaxane compounds are prepared via a chloride-anion-templated clipping strategy. (1)H NMR titration experiments demonstrate that the rotaxane host systems exhibit high binding affinities and general selectivities for chloride anions in DMSO-d(6) or CDCl(3)/CD(3)OD solvent systems. UV-visible and fluorescence spectroscopy experiments reveal that the rotaxane receptors are ineffective as optical anion sensors. However, both receptors are shown to be capable of detecting chloride anions electrochemically via cathodic shifts in the porphyrin P/P(+) redox couples.  相似文献   

20.
We report the synthesis of a dithienylpyrrole-stoppered rotaxane and its subsequent electrochemical polymerisation onto a platinum working electrode surface. We have shown that the tetracationic cyclophane moiety of the rotaxane does not impair electropolymerisation of this derivative. Indeed, functionalised films can be conveniently prepared by oxidative polymerisation of the dithienylpyrrole stopper units, to yield a network of rotaxane units interconnected by a conducting polymer backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号