首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
牛血清白蛋白的光损伤和光氧化机理   总被引:1,自引:0,他引:1  
运用激光闪光光解瞬态吸收技术, 在266 nm激光激励下, 研究了牛血清白蛋白(BSA)光损伤和被SO4-·单电子氧化的反应机理, 表征了反应过程中生成的自由基. 结果表明, 在266 nm激光照射下, BSA可同时发生光电离和光激发, 生成色氨酸阳离子自由基(Trp/NH+·), 由Trp/NH+·快速脱质子形成的色氨酸中性自由基(Trp/N·)及色氨酸三重激发态(3Trp*), 3Trp*再与酪氨酸(Tyr)发生分子内电子转移生成酪氨酸中性自由基(Tyr/O·). 在SO4-·单电子氧化的反应中, 借助减谱技术, 求得BSA中Tyr和色氨酸(Trp)自由基的表观生成速率常数, 但未发现分子内电子转移现象, 阐明了SO4-·自由基是通过与BSA中的Tyr和Trp发生电子转移反应来氧化BSA的, SO4-·氧化BSA的反应速率常数为1.51×1010 L·mol-1·s-1, 从而为进一步研究血清白蛋白的氧化还原代谢过程提供理论基础.  相似文献   

2.
The photochemical processes of aromatic amino acids were investigated in aqueous solution using acetone as photosensitizer by KrF (248 nm) laser flash photolysis. Laser-induced transient species were characterized according to kinetic analysis and quenching experiments. The intermediates recorded were assigned to the excited triplet state of tryptophan, the radicals of tryptophan and tyrosine. The excited triplet state of tryptophan produced via a triplet-triplet excitation transfer and the radicals arising from electron transfer reaction has been identified. Neither electron transfer nor energy transfer between triplet acetone and phenylalanine can occur in photolysis of phenylalanine aqueous solution which contains acetone. Furthermore, triplet acetone-induced radical transformation: Trp/N-Tyr→Trp-Tyr/O was observed directly in photolysis of dipeptide (Trp-Tyr) aqueous solution containing acetone, and the transformation resulting from intramolecular electron transfer was suggested.  相似文献   

3.
用激光闪光光解瞬态吸收光谱研究了水溶液中含芳香氨基酸残基肽的光敏化反应过程.结果表明,在丙酮存在的含色氨酸残基肽(Trp-Gly,n-f-Met-Trp,Trp-Phe)体系的光解,丙酮三重态与Trp分别通过三重态-三重态(T-T)激发能转移和电子转移生成Trp激发三重态和N中心自由基(Trp/N·);丙酮三重态仅与含酪氨酸残基肽(Phe-Tyr)通过电子转移生成Tyr酚氧自由基(Tyr/O·).在色氨酰酪氨酸(Trp-Tyr)与丙酮的光解体系中,观察到分子内的电子转移,即由Trp/N·-Tyr→Trp-Tyr/O·自由基的生成过程  相似文献   

4.
Time-resolved magnetic resonance experiments (TREPR and CIDNP) are used to investigate previously unobserved redox chemistry of the surfactant dioctyl sulfosuccinate ester (AOT) using the photoexcited triplet state of anthraquinone 2,6-disulfonate (3AQDS*). Several different free radicals resulting from two independent oxidation pathways (electron transfer and hydrogen abstraction) are observed. These include the radical ions of AQDS and sulfite from electron-transfer processes, carbon-centered radicals from H-atom abstraction reactions, and an additional carbon-centered radical formed by electron transfer from the AOT sulfonate head group followed by the loss of SO3. The radicals exhibit intense chemically induced dynamic electron spin polarization (CIDEP) in their TREPR spectra. The intensity ratios of the observed TREPR signals for each radical depend on the water pool size and temperature, which in turn affect the predominant CIDEP mechanism. All signal carriers are accounted for by simulation, and CIDNP results provide strong supporting evidence for the assignments.  相似文献   

5.
The thermodynamic parameters for the formation of the free radicals upon electron transfer quenching of the flavin triplet state (3FMN) by tryptophan and tyrosine, Delta(FR)H and Delta(FR)V, were obtained in aqueous solution by the application of laser-induced optoacoustic spectroscopy at various temperatures. The Delta(FR)H and Delta(FR)V values include the electron transfer and charge separation steps plus the protonation of the FMN anion radical and the deprotonation of the amino-acid cation radical. A linear correlation was found between the Delta(FR)H and Delta(FR)V values for each of the amino acids in phosphate buffers of [CH3(CH2)3]4N+, Li+, NH4+, K+ and Cs+. The compensation between Delta(FR)H and Delta(FR)V within the salt series, and the independent evaluation of the Gibbs energy for electron transfer Delta(ET)G(o) afforded the entropy change, Delta(FR)S, for the reaction, different for the two amino acids. The values of Delta(FR)H, Delta(FR)V and Delta(FR)S in each buffer are mainly determined by the changes in strength and probably number of hydrogen bonds between the reacting partners and water produced along all steps leading to the radicals FMNH* and A*. The Delta(FR)V values linearly correlate with the tabulated entropy of organization of the water structure for the five cations, DeltaS(o)(cat). The entropy change upon formation of the free radicals, Delta(FR)S, quantitatively correlated to the Delta(FR)V value, drives the separation of the ion pair after the electron transfer reaction in the case of highly organizing cations. The ratio X = T Delta(FR)S/Delta(FR)V = (55 +/- 9) kJ cm(-3) for Trp as 3FMN quencher is smaller than X = (83 +/- 9) kJ cm(-3) for Tyr as quencher. These values are discussed in conjunction with the Marcus reorganization energy, as calculated from the Gibbs activation energy of the electron transfer process, which is independent of the salt present but different for each of the two quenchers.  相似文献   

6.
Abstract— The UV photolysis of the aromatic amino acid, tryptophan (Trp), in the Ca2+-binding protein, cod paralbumin, type III, was studied using electron paramagnetic resonance (EPR) spectroscopy in the temperature range 4–80 K. For the Ca2+-bound protein, irradiation with UV light (250–400 nm) resulted in the generation of atomic hydrogen with a hyperfine splitting of 50.9 mT, whereas in the Ca2+-free form, where the Trp is exposed to solvent, the trapped atomic hydrogen was not in evidence. In the same spectra, the radical signal in the g = 2.00 region could be detected. The line shape of the Ca2+-bound form is similar to the EPR line shape obtained for Trp in micellar systems. In contrast, the EPR line shape for the Ca2+-free form is essentially featureless up to 80 K. The EPR spectra of the photoproducts of Trp and the nature of the photoreactions are therefore sensitive to the environment of Trp within the protein.  相似文献   

7.
New oxidation products and free radicals derived from tryptophan (Trp) oxidation under Fenton reaction conditions were identified using mass spectrometry. After the oxidation of tryptophan using hydrogen peroxide and iron (II) system (Fenton reaction), mono- and dihydoxy tryptophans and N-formylkynurenine were identified using electrospray mass spectrometry (ES-MS) and ES-MS/MS. Besides these products, new products resulting from the reaction of tryptophan and oxidized tryptophan and 3-methyl indole derivatives were also identified. The 3-methyl indole derivatives resulted, most probably, from the oxidation process and not from in-source processes. A dimer formed by cross-linking between two Trp radicals (Trp-Trp), similar to the previously described tyrosine dimer was observed, as well as the corresponding monohydroxy-dimer (Trp-Trp-OH). Tandem mass spectrometry was used to identify the structures of these new oxidation products. Free radicals derived from tryptophan oxidation under Fenton reaction were detected using as spin trap the DMPO. The free radical species originated during the oxidation reaction formed stable adducts with the spin trap, and these adducts were identified by ES-MS. New adducts of oxidized tryptophan radicals, namely monohydroxy-tryptophan and dihydroxy-Trp dimer radicals, with one and two DMPO spin trap molecules where identified. Tandem mass spectrometry was used to confirm the proposed structure of the observed adducts.  相似文献   

8.
Ru(II)-TAP complexes have been shown to be very attractive compounds in the frame of developments of new anticancer drugs targeting the genetic material. This increasing interest originates from observations of covalent bond formations, triggered by photo-induced electron transfer (PET) between Ru(II)-TAP complexes and guanine bases of DNA. This photoreaction has recently been extended to the tryptophan (Trp) amino acid for future applications involving peptides. Thus, a double photo-addition of Trp residues of peptides on Ru(II) complexes is demonstrated by mass spectrometry with some structural issues. Such bi-adduct formations offer the possibility of photocrosslinking two Trp-containing biomolecules, which is investigated in this study. Thus, photocrosslinking between two complementary oligonucleotides (ODNs) derivatized by Trp-containing tripeptides is demonstrated by polyacrylamide gel electrophoresis (PAGE) in the presence of Ru(II)-TAP complexes. Both PAGE and MS indicate that such photocrosslinkings arise from two reaction pathways: either via the double addition of Trp residues on the Ru complex or from dimerization of Trp radicals. The competition between these two pathways depends on the experimental conditions. Heterobridgings between guanine bases and tryptophan residues mediated by Ru(II)-TAP complexes is also examined, opening the way to ODN-peptide photocrosslinkings.  相似文献   

9.
The influence of the antioxidant spermine of the UV-induced formation of free radicals from tryptophan in frozen aqueous solutions was studied by electron paramagnetic resonance (EPR) instrumentation, and the stability of the radicals was investigated in the range 95–200 K. Without spermine, the tryptophan cation and neutral tryptophan radical were stabilized at 77 K; cations were formed by electron ejection from an excited singlet state, and neutral radicals by hydrogen donation from tryptophan in the triplet state. When present, spermine trapped the ejected photoelectrons; the rates of the two photoreactions of tryptophan were also influenced by spermine. Firstly, at low tryptophan concentrations, the yield of cations was reduced, due to diminished charge transfer from the excited singlet state to the solvation shell. Secondly, at high concentrations, minute additions of spermine enhanced intersystem crossing (which is quenched, in the absence of spermine, by dimerization) and, consequently, the yield of neutral radicals was increased. At 180 K, the electrons trapped by spermine were released and reacted with molecular oxygen to form the superoxide radical; at 190 K, the tryptophan radicals were thermally annealed.  相似文献   

10.
Electrochemical sensors are essential for point‐of‐care testing (POCT) and wearable sensing devices. Establishing an efficient electron transfer route between redox enzymes and electrodes is key for converting enzyme‐catalyzed reactions into electrochemical signals, and for the development of robust, sensitive, and selective biosensors. We demonstrate that the site‐specific incorporation of a novel synthetic amino acid (2‐amino‐3‐(4‐mercaptophenyl)propanoic acid) into redox enzymes, followed by an S‐click reaction to wire the enzyme to the electrode, facilitates electron transfer. The fabricated biosensor demonstrated real‐time and selective monitoring of tryptophan (Trp) in blood and sweat samples, with a linear range of 0.02–0.8 mm . Further developments along this route may result in dramatic expansion of portable electrochemical sensors for diverse health‐determination molecules.  相似文献   

11.
Radicals formed by electron transfer to protonated arginine have been predicted by theory to undergo an inverse migration of the hydrogen atom from the C(alpha) position to the guanidine carbon atom. Experiments are reported here that confirm that a fraction of arginine and arginine amide radicals undergo such an inverse hydrogen migration. The rearranged arginine and arginine amide C(alpha) radicals are detected as stable anions after charge inversion by collisions with Cs atoms of precursor cations at 3 and 50 keV kinetic energies. RRKM calculations on the B3-PMP2/aug-cc-pVTZ potential energy surface indicate that arginine radicals undergo rapid rotations of the side chain to reach conformations suitable for C(alpha)-H transfer, which is calculated to be fast (k > 10(9) s(-1)) in radicals formed by electron transfer. By contrast, H-atom transfer from the guanidine group onto the carboxyl or amide C=O groups is >50 times slower than the C(alpha)-H atom migration. The guanidine group in arginine radicals is predicted to be a poor hydrogen-atom donor but a good H-atom acceptor and thus can be viewed as a radical trap. This property can explain the frequent observation of nondissociating cation radicals in electron capture and electron transfer mass spectra of arginine-containing peptides.  相似文献   

12.
High-frequency electron paramagnetic resonance (EPR) and X-band electron-nuclear double resonance (ENDOR) spectroscopies were used to investigate the effect of gamma-irradiation on single crystals of L-tyrosine hydrochloride at room temperature. The oxidation product is the tyrosyl radical formed by hydrogen abstraction from the phenolic group; interestingly, on freshly irradiated crystals, two tyrosyl radicals were identified, characterized by slightly different magnetic parameters. In particular, one of the two radicals, with a gxx value of 2.00621, has its phenoxyl oxygen strongly hydrogen-bonded to one or more donors; to our knowledge, this is the lower gxx value reported for tyrosyl radicals. These two oxidation radicals are found to evolve very slowly to a third, single more stable radical conformation. To interpret the experimental data, a possible molecular scenario is presented, where the process of radical formation can be seen as a hydrogen atom transfer or a proton-coupled electron transfer. These processes seem to be controlled by the specific network of hydrogen-bond interactions present in the crystal. The results are discussed in relation to their relevance for the interpretation of EPR spectra of tyrosyl radicals in biological systems.  相似文献   

13.
The relationship between peptide structure and electron transfer dissociation (ETD) is important for structural analysis by mass spectrometry. In the present study, the formation, structure and reactivity of the reaction intermediate in the ETD process were examined using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. ETD product ions of zwitterionic tryptophan (Trp) and Trp‐containing dipeptides (Trp‐Gly and Gly‐Trp) were detected without reionization using non‐covalent analyte complexes with Ca2+ and 18‐crown‐6 (18C6). In the collision‐induced dissociation, NH3 loss was the main dissociation pathway, and loss related to the dissociation of the carboxyl group was not observed. This indicated that Trp and its dipeptides on Ca2+(18C6) adopted a zwitterionic structure with an NH3+ group and bonded to Ca2+(18C6) through the COO? group. Hydrogen atom loss observed in the ETD spectra indicated that intermolecular electron transfer from a molecular anion to the NH3+ group formed a hypervalent ammonium radical, R‐NH3, as a reaction intermediate, which was unstable and dissociated rapidly through N–H bond cleavage. In addition, N–Cα bond cleavage forming the z1 ion was observed in the ETD spectra of Trp‐GlyCa2+(18C6) and Gly‐TrpCa2+(18C6). This dissociation was induced by transfer of a hydrogen atom in the cluster formed via an N–H bond cleavage of the hypervalent ammonium radical and was in competition with the hydrogen atom loss. The results showed that a hypervalent radical intermediate, forming a delocalized hydrogen atom, contributes to the backbone cleavages of peptides in ETD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The efficiency of the chemical pathway of DNA repair is studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP) using the model system containing guanosyl base radicals, and tryptophan as the electron donor. Radicals were generated photochemically by pulsed laser irradiation of a solution containing the photosensitizer 2,2'-dipyridyl, guanosine-5'-monophosphate, and N-acetyl tryptophan. Depending on the pH of the aqueous solution, four protonation states of the guanosyl radical are formed via electron or hydrogen atom transfer to the triplet excited dye. The rate constants of electron transfer from the amino acid to the guanosyl radical were determined by quantitative analysis of the CIDNP kinetics, which is very sensitive to the efficiency of radical reactions in the bulk, and rate constants vary from (1.0 +/- 0.3) x 10(9) M(-1) s(-1) for the cation and dication radicals of the nucleotide to (1.2 +/- 0.3) x 10(7) M(-1) s(-1) for the radical in its anionic form. They were found to be higher than the corresponding values for electron transfer in the case of N-acetyl tyrosine as the reducing agent.  相似文献   

15.
血红蛋白活性中心铁卟啉具有环状共轭结构,类似于叶绿素,可以吸收特定波长光,光会诱导铁卟啉发生氧化还原反应。研究中发现,紫外区波长光照射血红蛋白的氧化还原反应情况优于铁卟啉特征吸收波长(406 nm)光照射情况。无游离色氨酸(Trp)时,266 nm激光激发后高铁血红蛋白(metHb)、脱氧血红蛋白(deoxy Hb)、氧合血红蛋白(HbO_2)和碳氧血红蛋白(HbCO)均被激发至各自相应的激发态,其Soret带谱峰衰减至基态的时间大致相同;加入游离Trp后,激发态Trp会转移能量到铁卟啉,在直接和间接光能量双重作用叠加下,激发态铁卟啉衰减时间发生变化。metHb、deoxy Hb和HbCO衰减时间明显延长,但对HbO_2影响相对较小。根据瞬态吸收光谱、动力学曲线和紫外-可见吸收光谱综合分析可知,在加入游离Trp前后,4种形态血红蛋白在被入射光激发后,铁卟啉均反应至具有(或近似具有)一空位的铁六配位平面卟啉结构状态。  相似文献   

16.
Ultraviolet resonance Raman spectra of phytochrome in the red light-absorbing form (Pr) and the far-red light-absorbing form (Pfr) are reported. The spectra excited at 240-nm provide structural information about the protein part of phytochrome. The protein contains only a very small amount of β-sheet structure and most of the tyrosine side chains are located in hydrophobic environments. Indole rings of tryptophan (Trp) interact with neighboring groups in the Pr form and these interactions become weaker with the conversion from Pr to Pfr. Some Trp side chains of Pfr are surrounded by aliphatic groups but such is not the case in Pr. These changes in the environment occur at the same time as changes in orientation of Trp side chains. Our observations suggest that interactions between Trp residues and the tetrapyrrolic chromophore occur in the Pr form and that the strength of these interactions diminishes in the Pfr form.  相似文献   

17.
血红蛋白活性中心铁卟啉具有环状共轭结构,类似于叶绿素,可以吸收特定波长光,光会诱导铁卟啉发生氧化还原反应。研究中发现,紫外区波长光照射血红蛋白的氧化还原反应情况优于铁卟啉特征吸收波长(406 nm)光照射情况。无游离色氨酸(Trp)时,266 nm激光激发后高铁血红蛋白(metHb)、脱氧血红蛋白(deoxyHb)、氧合血红蛋白(HbO2)和碳氧血红蛋白(HbCO)均被激发至各自相应的激发态,其Soret带谱峰衰减至基态的时间大致相同;加入游离Trp后,激发态Trp会转移能量到铁卟啉,在直接和间接光能量双重作用叠加下,激发态铁卟啉衰减时间发生变化。metHb、deoxyHb、和HbCO衰减时间明显延长,但对HbO2影响相对较小。根据瞬态吸收光谱、动力学曲线和紫外-可见吸收光谱综合分析可知,在加入游离Trp前后,4种形态血红蛋白在被入射光激发后,铁卟啉均反应至具有(或近似具有)一空位的铁六配位平面卟啉结构状态。  相似文献   

18.
Multifrequency (95, 190, and 285 GHz) high-field electron paramagnetic resonance (EPR) spectroscopy has been used to characterize radical intermediates in wild-type and Trp191Gly mutant cytochrome c peroxidase (CcP). The high-field EPR spectra of the exchange-coupled oxoferryl--trytophanyl radical pair that constitutes the CcP compound I intermediate [(Fe(IV)=O) Trp*(+)] were analyzed using a spin Hamiltonian that incorporated a general anisotropic spin-spin interaction term. Perturbation expressions of this Hamiltonian were derived, and their limitations under high-field conditions are discussed. Using numerical solutions of the completely anisotropic Hamiltonian, its was possible to simulate accurately the experimental data from 9 to 285 GHz using a single set of spin parameters. The results are also consistent with previous 9 GHz single-crystal studies. The inherent superior resolution of high-field EPR spectroscopy permitted the unequivocal detection of a transient tyrosyl radical that was formed 60 s after the addition of 1 equiv of hydrogen peroxide to the wild-type CcP at 0 degrees C and disappeared after 1 h. High-field EPR was also used to characterize the radical intermediate that was generated by hydrogen peroxide addition to the W191G CcP mutant. The g- values of this radical (g(x)= 2.00660, g(y) = 2.00425, and g(z)= 2.00208), as well as the wild-type transient tyrosyl radical, are essentially identical to those obtained from the high-field EPR spectra of the tyrosyl radical generated by gamma-irradiation of crystals of tyrosine hydrochloride (g(x)= 2.00658, g(y) = 2.00404, and g(z) = 2.00208). The low g(x)-value indicated that all three of the tyrosyl radicals were in electropositive environments. The broadening of the g(x) portion of the HF-EPR spectrum further indicated that the electrostatic environment was distributed. On the basis of these observations, possible sites for the tyrosyl radical(s) are discussed.  相似文献   

19.
Quantum mechanics/molecular mechanics (QM/MM) methods, employing density functional theory (DFT), have been used to compute the electron paramagnetic resonance (EPR) parameters of tryptophan and tyrosyl radical intermediates involved in the catalytic cycle of Pleurotus eryngii versatile peroxidase (VP) and its W164Y variant, respectively. These radicals have been previously experimentally detected and characterized both in the two-electron and one-electron activated forms of the enzymes. In this work, the well-studied W164 radical in VP has been chosen for calibration purposes because its spectroscopic properties have been extensively studied by multifrequency EPR and ENDOR spectroscopies. Using a B3LYP/CHARMM procedure, appropriately accounting for electrostatic, such as hydrogen bonding, and steric environmental interactions, a good agreement between the calculated and measured EPR parameters for both radicals has been achieved; g-tensors, hyperfine coupling constants (hfcc) and Mulliken spin densities have been correlated to changes in geometries, hydrogen bond networks and electrostatic environment, with the aim of understanding the influence of the protein surroundings on EPR properties. In addition, the present calculations demonstrate, for VP, the formation of a neutral tryptophan radical, hydrogen bonded to the nearby E243, via a stepwise electron and proton transfer with earlier involvement of a short-lived tryptophan cationic species. Instead, for W164Y, the QM/MM dynamics simulation shows that the tyrosine oxidation proceeds via a concerted electron and proton transfer and is accompanied by a significant reorganization of residues and water molecules surrounding the tyrosyl radical.  相似文献   

20.
二过碘酸合银(II)氧化还原引发丙烯酸甲酯在尼龙1010上接枝共聚合反应的研究刘盈海刘卫宏赵敏孟劲功(河北大学化学系保定071002)关键词二过碘酸合银(II)钾,尼龙1010,氧化还原引发,丙烯酸甲酯,接枝共聚目前Ce(IV)被认为是一种十分...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号