首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crew scheduling problem in the airline industry is extensively investigated in the operations research literature since efficient crew employment can drastically reduce operational costs of airline companies. Given the flight schedule of an airline company, crew scheduling is the process of assigning all necessary crew members in such a way that the airline is able to operate all its flights and constructing a roster line for each employee minimizing the corresponding overall cost for personnel. In this paper, we present a scatter search algorithm for the airline crew rostering problem. The objective is to assign a personalized roster to each crew member minimizing the overall operational costs while ensuring the social quality of the schedule. We combine different complementary meta-heuristic crew scheduling combination and improvement principles. Detailed computational experiments in a real-life problem environment are presented investigating all characteristics of the procedure. Moreover, we compare the proposed scatter search algorithm with optimal solutions obtained by an exact branch-and-price procedure and a steepest descent variable neighbourhood search.  相似文献   

2.
Airline crew scheduling problems have been traditionally formulated as set covering problems or set partitioning problems. When flight networks are extended, these problems become more complicated and thus more difficult to solve. From the current practices of a Taiwan airline, whose work rules are relatively simple compared to many airlines in other countries, we find that pure network models, in addition to traditional set covering (partitioning) problems, can be used to formulate their crew scheduling problems. In this paper, we introduce a pure network model that can both efficiently and effectively solve crew scheduling problems for a Taiwan airline using real constraints. To evaluate the model, we perform computational tests concerning the international line operations of a Taiwan airline.  相似文献   

3.
The airline crew scheduling problem is the problem of assigning crew itineraries to flights. We develop a new approach for solving the problem that is based on enumerating hundreds of millions random pairings. The linear programming relaxation is solved first and then millions of columns with best reduced cost are selected for the integer program. The number of columns is further reduced by a linear programming based heuristic. Finally an integer solution is obtained with a commercial integer programming solver. The branching rule of the solver is enhanced with a combination of strong branching and a specialized branching rule. The algorithm produces solutions that are significantly better than ones found by current practice.  相似文献   

4.
The integrated vehicle-crew-roster problem with days-off pattern aims to simultaneously determine minimum cost vehicle and daily crew schedules that cover all timetabled trips and a minimum cost roster covering all daily crew duties according to a pre-defined days-off pattern. This problem is formulated as a new integer linear programming model and is solved by a heuristic approach based on Benders decomposition that iterates between the solution of an integrated vehicle-crew scheduling problem and the solution of a rostering problem. Computational experience with data from two bus companies in Portugal and data from benchmark vehicle scheduling instances shows the ability of the approach for producing a variety of solutions within reasonable computing times as well as the advantages of integrating the three problems.  相似文献   

5.
Train crew management involves the development of a duty timetable for each of the drivers (crew) to cover a given train timetable in a rail transport organization. This duty timetable is spread over a certain period, known as the roster planning horizon. Train crew management may arise either from the planning stage, when the total number of crew and crew distributions are to be determined, or from the operating stage when the number of crew at each depot is known as input data. In this paper, we are interested in train crew management in the planning stage. In the literature, train crew management is decomposed into two stages: crew scheduling and crew rostering which are solved sequentially. We propose an integrated optimization model to solve both crew scheduling and crew rostering. The model enables us to generate either cyclic rosters or non-cyclic rosters. Numerical experiments are carried out over data sets arising from a practical application.  相似文献   

6.
The Wedelin algorithm is a Lagrangian based heuristic that is being successfully used by Carmen Systems to solve large crew pairing problems within the airline industry. We extend the Wedelin approach by developing an implementation for personnel scheduling problems (also termed staff rostering problems) that exploits the special structure of these problems. We also introduce elastic constraint branching with the twin aims of improving the performance of our new approach and making it more column generation friendly. Numerical results show that our approach can outperform the commercial solver CPLEX on difficult commercial rostering problems.  相似文献   

7.
We report about a study of a simulated annealing algorithm for the airline crew pairing problem based on a run-cutting formulation. Computational results are reported for some real-world short- to medium-haul test problems with up to 4600 flights per month. Furthermore we find that run time can be saved and solution quality can be improved by using a problem specific initial solution, by relaxing constraints as far as possible, by combining simulated annealing with a problem specific local improvement heuristic and by multiple independent runs.  相似文献   

8.
赵正佳 《运筹与管理》2011,20(6):106-113
以中国国际航空公司北京-成都航班为例,提出一种航空公司制定机组排班计划的新方法。首先以机组异地停留时间最短为目标,应用匈牙利算法生成“机组航班串”;然后,应用人员排班方法求得保证机组每周连休两日的条件下完成“机组航班串”飞行任务的最少机组数;最后,对这些机组制定具体的排班计划。应用该方法制定的机组排班计划使得航空公司在保证机组每周连休两日的条件下能够以最少的机组完成航班飞行任务,且机组在异地的停留时间最短。  相似文献   

9.
Constraint Handling in Genetic Algorithms: The Set Partitioning Problem   总被引:5,自引:0,他引:5  
In this paper we present a genetic algorithm-based heuristic for solving the set partitioning problem (SPP). The SPP is an important combinatorial optimisation problem used by many airlines as a mathematical model for flight crew scheduling.A key feature of the SPP is that it is a highly constrained problem, all constraints being equalities. New genetic algorithm (GA) components: separate fitness and unfitness scores, adaptive mutation, matching selection and ranking replacement, are introduced to enable a GA to effectively handle such constraints. These components are generalisable to any GA for constrained problems.We present a steady-state GA in conjunction with a specialised heuristic improvement operator for solving the SPP. The performance of our algorithm is evaluated on a large set of real-world problems. Computational results show that the genetic algorithm-based heuristic is capable of producing high-quality solutions.  相似文献   

10.
Performance aspects of a Lagrangian relaxation based heuristic for solving large 0-1 integer linear programs are discussed. In particular, we look at its application to airline and railway crew scheduling problems. We present a scalable parallelization of the original algorithm used in production at Carmen Systems AB, Göteborg, Sweden, based on distributing the variables. A lazy variant of this approach which decouples communication and computation is even useful on networks of workstations. Furthermore, we develop a new sequential active set strategy which requires less work and is better adapted to the memory hierarchy properties of modern RISC processors. This algorithm is also suited for parallelization on a moderate number of networked workstations.  相似文献   

11.
The integrated crew scheduling (ICS) problem consists of determining, for a set of available crew members, least-cost schedules that cover all flights and respect various safety and collective agreement rules. A schedule is a sequence of pairings interspersed by rest periods that may contain days off. A pairing is a sequence of flights, connections, and rests starting and ending at the same crew base. Given its high complexity, the ICS problem has been traditionally tackled using a sequential two-stage approach, where a crew pairing problem is solved in the first stage and a crew assignment problem in the second stage. Recently, Saddoune et al. (2010b) developed a model and a column generation/dynamic constraint aggregation method for solving the ICS problem in one stage. Their computational results showed that the integrated approach can yield significant savings in total cost and number of schedules, but requires much higher computational times than the sequential approach. In this paper, we enhance this method to obtain lower computational times. In fact, we develop a bi-dynamic constraint aggregation method that exploits a neighborhood structure when generating columns (schedules) in the column generation method. On a set of seven instances derived from real-world flight schedules, this method allows to reduce the computational times by an average factor of 2.3, while improving the quality of the computed solutions.  相似文献   

12.
Airline crew scheduling problem is a complex and difficult problem faced by all airline companies.To tackle this problem, it was often decomposed into two subproblems solved successively. First, the airline crew-pairing problem, which consists on finding a set of trips – called pairings – i.e. sequences of flights, starting and ending at a crew base, that cover all the flights planned for a given period of time. Secondly, the airline crew rostering problem, which consists on assigning the pairings found by solving the first subproblem, to the named airline crew members. For both problems, several rules and regulations must be respected and costs minimized.It is sure that this decomposition provides a convenient tool to handle the numerous and complex restrictions, but it lacks, however, of a global treatment of the problem. For this purpose, in this study we took the challenge of proposing a new way to solve both subproblems simultaneously. The proposed approach is based on a hybrid genetic algorithm. In fact, three heuristics are developed here to tackle the restriction rules within the GA’s process.  相似文献   

13.
Schedule development is typically the first phase of the airline planning process. We present a framework for perturbing scheduled departure and arrival times after a crew schedule has been found. We characterize perturbations that keep a schedule legal while not increasing the planned cost of the crew schedule. We show that when random delays occur in operations, the expected cost can be reduced and the on-time performance improved. Computational results are reported for two real fleets and a large number of crew schedules. AMS Classification: 90B06  相似文献   

14.
A typical railway crew scheduling problem consists of two phases: a crew pairing problem to determine a set of crew duties and a crew rostering problem. The crew rostering problem aims to find a set of rosters that forms workforce assignment of crew duties and rest periods satisfying several working regulations. In this paper, we present a two-level decomposition approach to solve railway crew rostering problem with the objective of fair working condition. To reduce computational efforts, the original problem is decomposed into the upper-level master problem and the lower-level subproblem. The subproblem can be further decomposed into several subproblems for each roster. These problems are iteratively solved by incorporating cuts into the master problem. We show that the relaxed problem of the master problem can be formulated as a uniform parallel machine scheduling problem to minimize makespan, which is NP-hard. An efficient branch-and-bound algorithm is applied to solve the master problem. Effective valid cuts are developed to reduce feasible search space to tighten the duality gap. Using data provided by the railway company, we demonstrate the effectiveness of the proposed method compared with that of constraint programming techniques for large-scale problems through computational experiments.  相似文献   

15.
Constraint Programming Based Column Generation for Crew Assignment   总被引:5,自引:0,他引:5  
Airline crew assignment problems are large-scale optimization problems which can be adequately solved by column generation. The subproblem is typically a so-called constrained shortest path problem and solved by dynamic programming. However, complex airline regulations arising frequently in European airlines cannot be expressed entirely in this framework and limit the use of pure column generation. In this paper, we formulate the subproblem as a constraint satisfaction problem, thus gaining high expressiveness. Each airline regulation is encoded by one or several constraints. An additional constraint which encapsulates a shortest path algorithm for generating columns with negative reduced costs is introduced. This constraint reduces the search space of the subproblem significantly. Resulting domain reductions are propagated to the other constraints which additionally reduces the search space. Numerical results based on data of a large European airline are presented and demonstrate the potential of our approach.  相似文献   

16.
This paper considers an airline crew allocation and scheduling problem faced by certain divisions of the United States Air Force. Two variants of the problem under consideration were posed to us by the U.S. Air Force. This paper reports our experience with two heuristic methods developed, each applicable to either variant of the problem. Although the problem described herein is peculiar to this situation, the heuristic scheduling and dispatching rules developed have been found to be very effective and are generally applicable in other related contexts of routeing and crew and vehicle scheduling problems as well. The two algorithms developed have been applied to a coded set of real world data. The results indicate that each one of the two methods is preferable to the other for one of the two variants of the problem. This suggests an overall effective composite technique.  相似文献   

17.
This paper discusses a decision support system for airline and railway crew planning. The system is a state-of-the-art branch-and-price solver that is used for crew scheduling and crew rostering. Since it is far from trivial to build such a system from the information provided in the existing literature, technical issues about the system and its implementation are covered in more detail. We also discuss several applications. In particular, we focus on a specific aircrew rostering application. The computational results contain an interesting comparison of results obtained with the approach in which crew scheduling is carried out before crew rostering, and an approach in which these two planning problems are solved in an integrated manner.  相似文献   

18.
Crew scheduling problems at the planning level are typically solved in two steps: first, creating working patterns, and then assigning these to individual crew. The first step is solved with a set covering model, and the second with a set-partitioning model. At the operational level, the (re) planning period is considerably smaller than during the strategic planning phase. We integrate both models to solve time critical crew recovery problems arising on the day of operations. We describe how pairing construction and pairing assignment are done in a single step, and provide solution techniques based on simple tree search and more sophisticated column generation and shortest-path algorithms.  相似文献   

19.
20.
Crew management is concerned with building the work schedules of crews needed to cover a planned timetable. This is a well-known problem in Operations Research and has been historically associated with airlines and mass-transit companies. More recently, railway applications have also come on the scene, especially in Europe. In practice, the overall crew management problem is decomposed into two subproblems, called crew scheduling and crew rostering. In this paper, we give an outline of different ways of modeling the two subproblems and possible solution methods. Two main solution approaches are illustrated for real-world applications. In particular we discuss in some detail the solution techniques currently adopted at the Italian railway company, Ferrovie dello Stato SpA, for solving crew scheduling and rostering problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号