首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
In situ polymerization of a bicellar mixture composed of a phospholipid and polymerizable surfactants afforded unprecedented stable bicelles. The polymerized composite showed an aligned phase over a wide thermal range (25 to >90 °C) with excellent 2H quadrupole splitting of the solvent signal, thus implying versatility as an alignment medium for NMR studies. Crosslinking of the surfactants also brought favorable effects on the kinetic stability and alignment morphology of the bicelles. This system could thus offer a new class of scaffolds for biomembrane models.  相似文献   

2.
The effect of dipalmitoyl phosphatidylcholine (DPPC)/dihexanoyl phosphatidylcholine (DHPC) bicelles on the microstructure of pig stratum corneum (SC) in vitro was evaluated. The physicochemical characterization of these nanoaggregates revealed small disks with diameters around 15 nm and a thickness of 5.4 nm. Upon dilution, the bicelles grow and transform into vesicles. Cryogenic scanning electron microscopy (cryo-SEM) images of the SC pieces treated with this system showed vesicles of about 200 nm and lamellar-like structures in the intercellular lipid areas. These vesicles probably resulted from the growth and molecular rearrangement of the DPPC/DHPC bicelles after penetrating the SC. The presence of lamellar-like structures is ascribed to the interaction of the lipids from bicelles with the SC lipids. The bicellar system used is suitable to penetrate the skin SC and to reinforce the intercellular lipid areas, constituting a promising tool for skin applications.  相似文献   

3.
The characterization of different bicellar aggregates and the effects of these systems on the stratum corneum (SC) microstructure have been studied. Dynamic light scattering (DLS) and freeze fracture electron microscopy (FFEM) techniques showed that both of the systems studied, dimyristoyl-phosphatidylcholine/dihexanoyl-phosphocholine (DMPC/DHPC) and dipalmitoyl-phosphocholine (DPPC)/DHPC, were formed by small discoidal aggregates at room temperature (20°C). Treating skin with DMPC/DHPC bicelles does not affect the SC lipid microstructure, whereas bicellar systems formed by DPPC and DHPC can promote the formation of new structures in the SC lipid domains. This indicates the passage of lipids from bicelles through the SC layers and also a possible interaction of these lipids with the SC lipids. Given the absence of surfactant in the bicellar composition and the small size of these structures, the use of these smart nano-systems offers great advantages over other lipid systems for dermatological purposes. Bicelles could be promising applications as drug carriers through the skin. This contribution, based on the new biological use of bicelles, may be useful to scientists engaged in colloid science and offers a new tool for different applications in skin and cosmetic research.  相似文献   

4.
We observe the spontaneous formation of path-dependent monodisperse and polydisperse phospholipid unilamellar vesicles (ULV) from two different equilibrium morphologies specifically, disklike micelles and extended lamellae, respectively. On heating beyond a temperature Tc, low temperature disklike micelles, or so-called bicelles, transform into lamellae. Dilution of the lamellar phase, at a fixed temperature, results in a complete unbinding transition and the formation of polydisperse ULV, demonstrating the instability of the lamellar phase. On the other hand, heating of a dilute bicellar phase above Tc results in monodisperse ULV, which on cooling revert back to bicelles for lipid concentrations phi > or = 0.5 wt % and transform into oblate ellipsoids for phi = 0.1 wt %, a morphology not previously seen in "bicellar" lipid mixtures. Monodisperse ULV reform on heating of the oblate ellipsoids.  相似文献   

5.
We have recently reported phospholipid bicelles (bilayered micelles) that have positive anisotropy of the magnetic susceptibility and align with their normals parallel to an external magnetic field [J. Am. Chem. Soc. 2001, 123, 1537]. Improvements have been made via the synthesis of a new phospholipid, 1-dodecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-phosphocholine (DBBPC). Bicelles can be formed by mixing DBBPC with a short-chain phospholipid, 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in a ratio between 5.1:1 and 6.5:1 in an aqueous medium. The (31)P NMR spectra clearly show that these bicelles align with their principal axes parallel to the magnetic field within a wide temperature range. The (31)P chemical shifts indicate that the conformation of the polar headgroup in these bicelles may be different from that in common bicelles. The phase behavior of a mixture of DBBPC/DHPC with 6:1 mole ratio was investigated in the temperature range of 10-75 degrees C using (31)P, (2)H, and (23)Na NMR. At lower temperatures (10-54 degrees C), the system is dominated by the bicellar phase. At higher temperatures (54-75 degrees C), isotropic micelles are formed and coexist with the bicelles. The partial alignment of maltotriose in the DBBPC/DHPC system was studied at three temperatures, and the (1)H-(13)C dipolar coupling constants are compared with those obtained for two other bicelle solutions.  相似文献   

6.
Enkephalins are endogenous neuropeptides that have opioid-like activities and compete with morphines for the receptor binding. The binding of these neuropeptides to membrane appears crucial since enkephalins interact with the nerve cell membranes to achieve bioactive conformations that fit onto multiple receptor sites (micro, delta, and kappa). Using NMR spectroscopy, we have determined the solution structure of the small opiate pentapeptide leucine enkephalin in the presence of isotropic phospholipid bicelles: phosphocholine bicelles (DMPC:CHAPS 1:4) and phosphocholine bicelles doped with ganglioside GM1 (DMPC:CHAPS:GM1 1:4:0.3). Bicelles containing GM1 were found to interact strongly with leucine enkephalin, whereas a somewhat weaker interaction was observed in the case of bicelles without GM1. Structure calculation from torsion angles, chemical shifts, and NOE-based distance constraints explored that the peptide could flexibly switch between several mu- and delta-selective conformations in both the bicelles though micro-selective conformations turned out to be geometrically preferred in each bicellar system. A detailed analysis of the structures presented supports the variance over the singly associated conformation of enkephalin in nerve cell membranes.  相似文献   

7.
Bicelles are a major medium form to produce weak alignment of soluble proteins for residual dipolar coupling (RDC) measurements. The obstacle to using the same type of bicelles for transmembrane proteins with solution-state NMR spectroscopy is the loss of signals due to the adhesion or penetration of the proteins into large bicelles, resulting in slow protein tumbling. In this study, weak alignment of the second and third transmembrane domains (TM23) of the human glycine receptor (GlyR) was achieved in low-q bicelles (q = DMPC/DHPC). Although protein-free bicelles with such low q would likely show isotropic properties, the insertion of TM23 induced weakly preferred orientations so that the RDC of the embedded protein can be measured. The extent of the alignment increased but the TM23 signal intensity decreased when q was varied from 0.19 to 0.60. A q of 0.50 was found to be an optimal compromise between alignment and the signal-to-noise ratio. In each pair of NMR experiments for RDC measurements, the same sample and pulse sequence were used, with one being performed at high-resolution magic-angle spinning to obtain pure J-couplings without RDC. A meaningful structure refinement in bicelles was possible by iteratively fitting the experimental RDCs to the back-calculated RDCs using the high-resolution NMR structure of GlyR TM23 in trifluoroethanol as the starting template. Combination of this method with the conventional high-resolution NMR in membrane mimicking mixtures of water and organic solvents offers an attractive way to derive structural information for membrane proteins in their native environment.  相似文献   

8.
We present several applications of both wide-line and magic angle spinning (MAS) solid-state NMR of bicelles in which are embedded fragments of a tyrosine kinase receptor or enkephalins. The magnetically orientable bicelle membranes are shown to be of particular interest for studying the functional properties of lipids and proteins in a state that is very close to their natural environment. Quadrupolar, dipolar and chemical shielding interactions can be used to determine minute alterations of internal membrane dynamics and the orientation of peptides with respect to the membrane plane. MAS of bicelles can in turn lead to high-resolution proton spectra of hydrated membranes. Using deuterium-proton contrast methods one can then obtain pseudo-high-resolution proton spectra of peptides or proteins embedded in deuterated membranes and determine their atomic 3D structure using quasi-conventional liquid-state NMR methods.  相似文献   

9.
The magnetic alignment behavior ofbicelles (magnetically alignable phospholipid bilayered membranes) as a function of the q ratio (1,2-dihexanoyl-sn-glycerol phosphatidylcholine/1,2-dimyristoyl-sn-glycerol phosphatidylcholine mole ratio) and temperature was studied by spin-labeled X-band electron paramagnetic resonance (EPR) spectroscopy and solid-state 2H and 31P NMR spectroscopy. Well-aligned bicelle samples were obtained at 45 degrees C for q ratios between 2.5 and 9.5 in both the EPR and NMR spectroscopic studies. The molecular order of the system, S(mol), increased as the q ratio increased and as the temperature decreased. For higher q ratios (> or = 5.5), bicelles maintained magnetic alignment when cooled below the main phase transition temperature (approximately 30 degrees C when in the presence of lanthanide cations), which is the first time, to our knowledge, that bicelles were magnetically aligned in the gel phase. For the 9.5 q ratio sample at 25 degrees C, S(mol) was calculated to be 0.83 (from 2H NMR spectra, utilizing the isotopic label perdeuterated 1,2-dimyristoyl-sn-glycerol phosphatidylcholine) and 0.911 (from EPR spectra utilizing the spin probe 3beta-doxyl-5alpha-cholestane). The molecular ordering of the high q ratio bicelles is comparable to literature values of S(mol) for both multilamellar vesicles and macroscopically aligned phospholipid bilayers on glass plates. The order parameter S(bicelle) revealed that the greatest degree of bicelle alignment was found at higher temperatures and larger q ratios (S(bicelle) = -0.92 for q ratio 8.5 at 50 degrees C).  相似文献   

10.
In bicellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), the transition from isotropic reorientation to partial orientational order, on warming, is known to coincide with a sharp increase in viscosity. In this work, cone-and-plate rheometry, (2)H NMR spectroscopy, and quadrupole echo decay observations have been used to obtain new insights into the dynamics of phases observed in bicellar DMPC/DHPC mixtures. Samples with 25% of the DMPC component deuterated were used to correlate rheological measurements with phase behavior observed by (2)H NMR spectroscopy. Mixtures containing only normal DMPC (DMPC/DHPC) or only chain perdeuterated DMPC (DMPC-d(54)/DHPC) were used to refine rheology and quadrupole echo decay measurements respectively. The viscosity peaked at 4-9 Pa·s, just above the isotropic-to-nematic transition, and then dropped as samples were warmed through the nematic-to-lamellar transition. Quadrupole echo decay times above the nematic-to-lamellar transition were significantly longer than typically observed in the liquid crystalline phase of saturated lipid multilamellar vesicles. This may indicate a damping of slow bilayer undulations resulting from the coupling of opposite bilayer surfaces by DHPC-lined pores.  相似文献   

11.
The dynamics of DMPC in different isotropic bicelles have been investigated by NMR and EPR methods. The local dynamics were obtained by interpretation of 13C NMR relaxation measurements of DMPC in the bicelles, and these results were compared to EPR spectra of spin-labeled lipids. The overall size of the bicelles was investigated by PFG NMR translational diffusion measurements. The dynamics and relative sizes were compared among three different bicelles: [DMPC]/[DHPC] = 0.25, [DMPC]/[DHPC] = 0.5, and [DMPC]/[CHAPS] = 0.5. The local motion is found to depend much more strongly on the choice of the detergent, rather than the overall size of the bicelle. The results provide an explanation for differences in apparent dynamics for different peptides, which are bound to bicelles. This in turn determines under what conditions reasonable NMR spectra can be observed. A model is presented in which extensive local motion, in conjunction with the overall size, affects the spectral properties. An analytical expression for the size dependence of the bicelles, relating the radius of the bilayer region with physical properties of the detergent and the lipid, is also presented.  相似文献   

12.
Nanometric bilayer-based self-assembled micelles commonly named as bicelles, formed with a mixture of long and short chains phosphatidylcholine lipids (PC), are known to orient spontaneously in a magnetic field. This field-induced orientational order strongly depends on the molecular structure of the phospholipids. Using small-angle X-ray scattering (SAXS), we performed detailed structural studies of bicelles and investigated the orientation/relaxation kinetics in three different systems: saturated-chain lipid bicelles made of DMPC (dimyristoyl PC)/DCPC (1,2-dicaproyl PC) with and without the added paramagnetic lanthanide ions Eu(3+), as well as bicelles of TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC)/DCPC. The structural study confirmed the previous NMR studies, which showed that DMPC bicelles orient with the membrane normal perpendicular (defined here as "nematic" orientation) to the magnetic field, whereas they orient parallel (defined here as "smectic" orientation) to the magnetic field in the presence of Eu(3+). The TBBPC bicelles also show smectic orientation. Surprisingly, the orientational order induced in the magnetic field remains even after the magnetic field is removed, which allowed us to investigate the orientation and relaxation kinetics of different bicelle structures. We demonstrate that this kinetics is very different for all three types of bicelles at the same lipid concentration; DMPC bicelles (~40 nm diameter) with and without Eu(3+) orient faster than TBBPC bicelles (~80 nm diameter). However, for the relaxation, DMPC bicelles (nematic) lose their macroscopic orientation only after one hour, whereas both DMPC bicelles with Eu(3+) and TBBPC bicelles (smectic) remarkably stay oriented for up to several days! These results indicate that the orientation mechanism of these nanometric disks in the magnetic field is governed by their size, with smaller bicelles orienting faster than the larger bicelles. Their relaxation mechanism outside the magnetic field, however, is governed by the degree of ordering. Indeed, the angular distribution of oriented bicelles is much narrower for the bicelles with smectic orientation, and, consequently, they keep aligned for much longer time (days) than those with nematic ordering (hours) outside the magnetic field. The understanding of the orientation/relaxation kinetics, as well as the morphologies of these "molecular goniometers" at molecular and supramolecular levels, allows controlling such an unprecedented long-range and long-lived smectic ordering of nanodisks and opens a wide field of applications for structural biology or material sciences.  相似文献   

13.
The stabilizing or disturbing effect of different surfactants on the bicellar phase of phospholipids significantly depends on their type. The effect of different surfactants on the bicellar structure made of a mixture of phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dihexanoyl-sn-glycero-3-phospho-choline (DMPC/DHPC) has been studied by the small angle scattering of synchrotron radiation. The study has been performed for three surfactants: dodecyldimethyl-(hexyloxymethyl)ammonium chloride, n-undecylammonium chloride and t-octylphenoxypolyethoxyethanol (Triton X-100) introduced into a bicellar solution of DMPC/DHPC (2.8:1). The bicellar phase has been disturbed in the shortest time in the presence of dodecyldimethyl-(hexyloxymethyl)ammonium chloride in this system a transition from the bicellar to lamellar structure has been directly visible. The changes have been less pronounced in the presence of undecylammonium chloride and practically not noted in the presence of Triton X-100.  相似文献   

14.
Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing.  相似文献   

15.
The interaction of ethanol with phospholipids was studied in bicelles at a physiologically relevant ethanol concentration of 20 mM and a lipid content of 14 wt % by high-resolution NMR. Transient association of ethanol with magnetically aligned bicelles imparts a small degree of anisotropy to the solute. This anisotropy allows detection of residual (1)H-(1)H and (1)H-(13)C dipolar couplings, which are superimposed on scalar couplings. Residual (2)H NMR quadrupole splittings of isotope-labeled ethanol were measured as well. The analysis of residual tensorial interactions yielded information on the orientation and motions of ethanol in the membrane-bound state. The fraction of phosphatidylcholine-bound ethanol was determined independently by gas chromatography and NMR. About 4% of ethanol is bound to phosphatidylcholine at a bicelle concentration of 14 wt % at 40 degrees C. Free and bound ethanol are in rapid exchange. The lifetime of ethanol association with phosphatidylcholine membranes is of the order of a few nanoseconds.  相似文献   

16.
Liquid-crystalline materials containing fullerenes are valuable in the development of supramolecular switches and in solar cell technology. In this study, we characterize the liquid-crystalline and dynamic properties of fullerene-containing thermotropic compounds using solid-state natural abundance (13)C NMR experiments under stationary and magic angle spinning sample conditions. Chemical shifts spectra were measured in isotropic, liquid-crystalline nematic and smectic A and crystalline phases using one-dimensional (13)C experiments, while two-dimensional separated local-field experiments were used to measure the (1)H- (13)C dipolar couplings in mesophases. Chemical shift and dipolar coupling parameters were used to characterize the structure and dynamics of the liquid-crystalline dyads. NMR data of fullerene-containing thermotropic liquid crystals are compared to that of basic mesogenic unit and mesomorphic promoter compounds. Our NMR results suggest that the fullerene-ferrocene dyads form highly dynamic liquid-crystalline phases in which molecules rotate fast around the symmetry axis on the characteristic NMR time scale of approximately 10 (-4) s.  相似文献   

17.
Bicelles are excellent membrane-mimicking hosts for a dynamic and structural study of solutes with NMR, but the magnetic fields required for their alignment are hard to apply to optical conditions. Here we demonstrate that bicellar mixtures can be aligned by shear forces in a Couette flow cell, to provide orientation of membrane-bound retinoic acid, pyrene and cytochrome c (cyt c) protein, conveniently studied with linear dichroism spectroscopy.  相似文献   

18.
The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.  相似文献   

19.
Several applications of solid-state nuclear magnetic resonance (NMR) spectroscopy to studying polyolefin mobility at temperatures ranging from room temperature to above the polymer melt are described. 13C NMR can be used with magic-angle spinning and high-power proton decoupling to determine the fraction of mobile polymer in polypropene and to characterize the nature of the polymer chain motions as a function of sample temperature. Similar techniques can be used to characterize the local motions of complex copolymer systems such as heterophasic ethylene-propene copolymers. The practicality of low-speed magic angle spinning to observe quantitative high-resolution NMR spectra of neat, molten polymer samples is also described.  相似文献   

20.
Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints, such as heteronuclear dipolar couplings between 1H, 13C, and 31P nuclei, in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques, such as PISEMA. In addition, multiple dipolar couplings can be measured accurately, and the presence of a strong dipolar coupling does not suppress the weak couplings. High-resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号