首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-polarization filter comprising a gold-coated photonic crystal fiber based on surface plasmon resonance is designed and investigated. The pattern matching and coupled polarization characteristics analyzed by the full-vector finite element method (FEM) and losses at 1,540 nm are achieved to 1,016.01739 dB/cm (x-pol core mode) and 33.81917 dB/cm (y-pol core mode). The crosstalk (CT) value of the 1,540 nm band is ?853.12653 dB for fiber length L=1,000μm and the bandwidth is 850 nm. The working wavelength of the filter ranges from 1,280 nm to 1,540 nm by varying the diameter of outer air holes (d1), the diameter of inner air holes (d4), the metal film thickness (t), as well as the liquid refractive index (n).  相似文献   

2.
In order to simply design a highly birefringent photonic crystal fiber (HB-PCF), we numerically simulated the correlation between the birefringence and the structural parameter of photonic crystal fiber with square-lattice or triangle-lattice air-holes by using multipole method. It is shown that the phase birefringence B(λ) and the group birefringence G(λ) can be modulated by the structure parameter of normalized wavelength λ/Λ and the relative air-hole size d/Λ. Numerical results show very high phase and group birefringence of the order of 10−2. The group birefringence becomes negative in the region where phase birefringence increases with an increase in normalized wavelength that does not appear in traditional highly birefringent fibers.  相似文献   

3.
In this paper, we present and propose a novel structure for improved birefringence and single-mode propagation condition photonic crystal fiber (PCF) in a broad range of wavelength. The birefringence of the fundamental mode and single mode property in such a PCF is numerically estimated by employing full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). The simulation results illustrate that we can achieve a high birefringence and perfect single-mode condition by employing silica-filled into one-line elliptical air holes parallel to x-axis and rotated by an angle. Obviously, the proposed PCF is quite useful for optical devices.  相似文献   

4.
We propose a high birefringence and low loss index-guiding photonic crystal fiber (PCF) using the complex unit cells in cladding by the finite-element method. Results show that the birefringence and confinement loss in such PCF fiber is determined not only by the whole cladding asymmetry but also the shape of the PCF core. The maximal modal birefringence and lowest confinement loss of our proposed structures at the excitation wavelength of λ = 1550 nm can be achieved at 8.7 × 10−3 and 5.27 × 10−5 dB/km, respectively.  相似文献   

5.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

6.
张方迪  刘小毅  张民  叶培大 《物理学报》2006,55(12):6447-6453
提出了一种空气孔长方形排列的单偏振光子晶体光纤结构,并利用基于棱边/节点混合元的带有完全匹配层吸收边界条件的全矢量有限元方法对该结构进行了分析.对设计思路进行了详细说明.通过优化结构参数在理论上获得了波长在1.38—1.61 μm范围内仅有慢轴模且限制损耗低于0.1 dB/km的单模单偏振操作. 关键词: 光子晶体光纤 单偏振 限制损耗 全矢量有限元方法  相似文献   

7.
In this paper, a novel double-clad photonic crystal fiber (DC-PCF) is proposed for achieving both high birefringence and low leakage loss. According to numerical simulation of the proposed PCF, the extraordinarily high birefringence (over 2×10−2) and low leakage loss of the order of 0.0001 dB/km over a large wavelength range are achieved simultaneously. Single-polarization single-mode (SPSM) operation with low leakage loss is also discussed and can be realized and optimized in the PCF by adopting suitable structure parameters.  相似文献   

8.
In this paper, we investigate the dispersion and polarization properties of photonic crystal fiber with one ring or more rings of elliptical air-holes using plane-wave expansion (PWE) method. By introducing three rings of elliptical air-holes, PCF with ultra-low and ultra-flattened dispersion is designed and a total dispersion curve between ±0.5 ps/nm/km from 1315 to 1855 nm wavelength range is demonstrated. Furthermore, the polarization property of these elliptical air-hole-containing PCFs is analyzed and the variation of the birefringence with the area and ellipticity of the elliptical air-holes are discussed.  相似文献   

9.
基于谐振吸收效应的单模单偏振光子晶体光纤研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于谐振吸收效应的单模单偏振光子晶体光纤,阐述了其工作原理,并利用全矢量有限元法对其模场分布、限制损耗、工作带宽、消光比等基本特性进行了数值模拟. 数值结果表明这种结构可以获得很高的单模单偏振工作带宽,并能以较低的损耗代价实现极高的消光比.讨论了结构设计参量对光纤性能的影响.研究结果对设计新型的高性能单模单偏振光纤具有一定的指导意义.  相似文献   

10.
A new high birefringence photonic crystal fiber is proposed within the terahertz frequency region. It has two types of claddings, the inner is composed of six ellipse air holes arranged in a honeycomb array and the outer surrounded by circle holes. By using the full vector finite element method with anisotropic perfectly matched layers absorption boundary condition, the birefringence, chromatic dispersion and confinement loss of the fundamental mode are evaluated. The results show that the birefringence can achieve 10−3 when the wavelength increases from 600 μm to 900 μm. This structure will provide some reference value for the designing of high birefringence terahertz photonic crystal fiber.  相似文献   

11.
Hui ZQ 《光谱学与光谱分析》2011,31(10):2611-2617
研究了信号与泵浦光同向传输,在色散平坦高非线性光子晶体光纤中的多泵浦四波混频光谱增益特性,从光谱学的角度分析了泵浦光波长漂移,泵浦光偏振方向平行与正交,信号光相对于泵浦光偏振态失配,二者总功率对多泵浦四波混频光谱增益特性的影响,探讨了泵浦光数目对多泵浦四波混频光谱增益特性的冲击。研究发现在36.4 nm波长范围,二者偏振态匹配时多泵浦四波混频效果最好,同时,多泵浦四波混频效应对偏振极为敏感,若两束泵浦光偏振态垂直,则它们分别与信号光发生四波混频,反之,则两束泵浦光之间亦会发生四波混频作用,且在正交泵浦的前提下,信号光偏振方向变化会直接导致各闲频光增益大小发生变化;进一步指出当采用三束连续泵浦光时,同样可以在一定波长范围内实现多泵浦四波混频效应。这些研究对于开发基于光子晶体光纤中多泵浦四波混频效应工作的超快光子器件具有一定的指导意义。  相似文献   

12.
针对大于500℃的高温环境,提出了一种可用于高温温度测量的高温光子晶体光纤(PCF)温度传感器。在光子晶体光纤末端熔接一段纯石英无芯光纤构成外腔式光纤法珀腔(EFPI)结构。纯石英无芯光纤在高温下的热膨胀和热光效应使得EFPI的光学腔长发生变化。结合光纤白光干涉测量技术,通过测量EFPI的腔长得到被测温度。在不同温度环境下,对腔长为175μm的EFPI光纤温度传感器进行连续测量。测量结果显示,设计的高温光纤温度传感器在27~1100℃范围内,腔长-温度三阶拟合精度达到99.95%,腔长-温度灵敏度为(0.851+0.0023T-0.000000957T2)nm/℃,其中在1100℃时,温度测量分辨率为0.225℃。  相似文献   

13.
刘小毅  张方迪  张民  叶培大 《中国物理》2007,16(6):1710-1718
A novel single-mode single-polarization (SMSP) photonic crystal fibre has been proposed and analysed based on the polarization-dependent coupling and absorption effect via a full-vector finite element method with perfectly matched layers. The numerical results predict that very efficient SMSP operation can be achieved with both high bandwidth and high extinction ratio at low loss penalty. Effects of the fibre structural parameters on the SMSP bandwidth and extinction ratio have been explored, which will provide useful guide for the design and fabrication of the fibre. The results obtained will be instructive for the realization of new SMSP fibres with high performance.  相似文献   

14.
In this paper, we have proposed a new type of quasi photonic crystal fiber (PCF) with a silicon nano crystal core. This structure can be used to sense aqueous analysis over a wavelength range of 1.00?µm to 3.00?µm. The properties of this structure are simulated using the vector-finite element method (VFEM) employing a boundary condition. The proposed model provides a significant effect of birefringence and a very high nonlinear coefficient for two different fundamental modes, which are obtained by adjusting the size of the silicon nano crystal filled ellipse core. This provides a high nonlinearity of 4.2?×?105 W?1Km?1 and a birefringence of ? 3.2?×?10?1 at the wavelengths 1.00?µm and 3.00?µm, respectively. Some others properties, such as the effective area, scattering loss, confinement loss, numerical aperture (NA)and power fraction are also analyzed to measure the performance of this structure. The proposed model is useful for sensing and biomedical imaging applications. The proposed structure may also find extensive applications in optical communication and sensor systems.  相似文献   

15.
A soft glass dual core polarization splitter based on highly birefringent photonic crystal fiber (PCF) is proposed and the full vector finite element method (FEM) is employed to analyze the impacts of structural parameters on birefringence and the coupling length, and simulation results show that high birefringence on the order of 10−2 can be obtained at 1.55 μm, moreover, hole size, hole pitch and elliptic ratio all affect birefringence and the coupling length. Based on these results, the PCF's structure is optimized to realize a polarization splitter of 282 μm whose largest extinction ratio is around −45.42 dB at 1.55 μm. Meanwhile, the bandwidth at the extinction ratio of −10 dB is about 90 nm, and around 32 nm at −20 dB.  相似文献   

16.
A highly birefringent dispersion compensating hybrid photonic crystal fiber is presented. This fiber successfully compensates the chromatic dispersion of standard single mode fiber over E- to L-communication bands. Simulation results reveal that it is possible to obtain a large negative dispersion coefficient of about −1054.4 ps/(nm km) and a relative dispersion slope of 0.0036 nm−1 at the 1550 nm wavelength. The proposed fiber simultaneously provides a high birefringence of order 3.45 × 10−2 at the 1550 nm. Moreover, it is confirmed that the designed fiber successfully operates as a single mode in the entire band of interest. For practical conditions, the sensitivity of the fibers dispersion properties to a ±2% variation around the optimum values is carefully studied and the nonlinearity of the proposed fiber is also reported and discussed. Such fibers are essential for high speed transmission system as a dispersion compensator, sensing applications, fiber loop mirrors as well as maintaining single polarization, and many nonlinear applications such as four-wave mixing, etc.  相似文献   

17.
Lin Zhao  Zhonghua Su  Yong Hao 《Optik》2013,124(24):6574-6576
Aiming at the requirement of high birefringence, a new kind of photonic crystal fiber (PCF) with octagonal and squarely lattice is proposed. In this structure, squarely lattices are added in the inner layer to obtain high birefringence. Birefringence and dispersion as a function of wavelength and size of PCF are analyzed by using Finite Element Method (FEM). Simulation results show that this kind of PCF exhibits high birefringence with a magnitude of 10?3, and one zero dispersion point is obtained simultaneously. In addition, the characteristics of PCF can be tuned by changing the size of fiber.  相似文献   

18.
A gain and gain-flatness improved L-band dual-pass Raman fiber amplifier (RFA) utilizing a photonic crystal fiber (PCF) as gain medium is demonstrated. By introducing complementary gain spectra of typical forward and backward pumping single-pass RFA using the same PCF, we finally achieve average net gain level of 22.5 dB with a ±0.8 dB flattening gain in 20-nm bandwidth from 1595 nm to 1615 nm, which is rare in RFAs with only one single pump and no flattening filter. Compared with the single-pass pump configurations, gain level, flatness and bandwidth are greatly improved by using the dual-pass amplification configuration. The limitation of this configuration caused by multi-path interference (MPI) noise and stimulated Brillouin scattering (SBS) is also discussed.  相似文献   

19.
惠战强  张建国 《物理学报》2011,60(7):74220-074220
光层组播是未来透明光子网络中一项重要的全光信号处理功能,提出并实验证实了一种基于色散平坦高非线性光子晶体光纤中多抽运四波混频效应的光层组播方法,将一束信号光与两束连续抽运光同时输入高非线性光子晶体光纤中,通过多抽运四波混频过程,产生四个携带该数据信息的闲频光,从而实现了单一信号的四信道光层组播功能,组播信道波长在35.2 nm范围可调谐,组播信道最大间距4.4 THz,最大转换效率-22 dB,最优Q因子为5.3,该方法的特点在于基于光纤中的四波混频效应工作,因而具有对调制格式和比特率透明的 关键词: 光层组播 多抽运四波混频 光子晶体光纤  相似文献   

20.
基于四波混频的反斯托克斯变换, 被广泛应用于短波辐射高分辨率成像以及直接激发分子的电子跃迁等方面. 为了实现更加高效的反斯托克斯变换, 利用中心波长为810 nm脉冲宽度为120 fs的钛蓝宝石(Ti: sapphire)飞秒激光器作为抽运光源, 在长度为0.5 m和3 m的光子晶体光纤中分别实现了高阶模和基膜的简并四波混频. 实验中, 采用的光子晶体光纤的零色散波长在820 nm附近. 在基模相位匹配条件下, 在560 nm附近实现了高效地反斯托克斯信号的产生, 反斯托克斯信号与残余抽运信号的最大功率比为33:1; 反斯托克斯信号和斯托克斯信号的最大功率比25:1; 反斯托克斯信号最大功率转换效率Pa/Pp0为34%. 抽运波长从790 nm逐渐增加到810 nm过程中, 在长为3 m的光子晶体光纤中相位从不匹配状态转化为高阶模匹配状态后, 再转化为基模匹配状态. 通过实验研究得出了相位匹配程度随抽运功率、波长和光纤长度的变化规律, 同时分析了造成理论计算与实验结果存在差异的主要因素. 本文为研究在光子晶体光纤基模中实现相位匹配和产生高效反斯托克斯信号提供了理论和实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号