首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Al2O3:Si,Ti, prepared under oxidizing condition at high temperature, gives PL emission around 430 nm when excited with 240 nm. The Al2O3:C, TL/OSL phosphor, also shows emission around 430 nm, which corresponds to characteristic emission of F-center. Thus, to identify the exact nature of luminescent center in Al2O3:Si,Ti, fluorescence lifetime measurement studies were carried out along with the PL,TL and OSL studies. The PL and TL in Al2O3:Si,Ti show emission around 430 nm and the time-resolved fluorescence studies show lifetime of about 43 μs for the 430 nm emission, which is much smaller than the reported lifetime of ∼35 ms for the 430 nm emission (F-center emission) in Al2O3:C phosphor. Therefore, the emission observed in Al2O3:Si,Ti phosphor was assigned to Ti4+ charge transfer transition. Fluorescence studies of Al2O3:Si,Ti do not show any traces of F and F+ centers. Also, Ti4+ does not show any change in the charge state after gamma-irradiation. On the basis of the above studies, a mechanism for TSL/OSL process in Al2O3:Si,Ti is proposed.  相似文献   

2.
Au/SiO2 nanocomposite films were prepared by radio frequency sputtering technique and annealing. The above nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The surface of the nanocomposite films was uniform with the particle diameter of 100-300 nm. The size of Au crystallites increased on increasing annealing time. The luminescent behavior of the nanocomposite films was characterized by photoluminescence (PL) with different excitation wavelengths. Two emission peaks at around 525 nm and 560 nm were observed with the excitation wavelength at 325 nm. An intensive emission peak at around 325 nm was observed with the excitation wavelength at 250 nm, which is related to the defective structure of the amorphous SiO2 layer because of oxygen deficiency, and could be applied to many fields, such as ultraviolet laser and ultraviolet detector.  相似文献   

3.
The infrared (IR) photoluminescence (PL) emission of spark-processed silicon (sp-Si) was investigated. A broad and strong room temperature PL peak in the 945 nm (1.31 eV) spectral range was observed when sp-Si was excited with an argon laser. This peak is different from the PL commonly reported for anodically etched porous silicon and other silicon-based materials. The PL intensity increases substantially after annealing sp-Si between 350 and 500 °C in air after which it decreases again. The PL wavelength is observed to peak at 1010 nm by annealing sp-Si near 450 °C. It was further found that the most efficient PL occurs for a Si/O ratio of 0.3, for a small spark gap of about 1 mm, and for spark-processing times in the 15-60 min range.A model for the IR PL is proposed which mirrors that for visible PL. Specifically, it is proposed that the electrons which have been pumped by the laser from the ground state into a broad quasi-absorption band (or closely spaced absorption lines between 1.7 and 2.3 eV) revert back to lower IR levels at 1.31 eV by a non-radiative transition from where they revert radiatively to the ground state by emitting the observed 945 nm light.  相似文献   

4.
Spectral and time-resolved photoluminescence (TRPL) measurements were performed on ZnO nanoparticles of different sizes (17-300 nm). Under a low photon energy excitation of 2.33 eV, the time-integrated PL spectra (TIPL) clearly exhibit broad emission in the range of 1.2-2.3 eV. Upon increase of the particle size, a red-shift in the PL peak position was observed. Gaussian analysis indicates that this red-shift corresponds to the increased relative magnitude of the Gaussian combination in the low energy region. In addition, TRPL demonstrates a clear relationship between the particle diameters and the PL decay times. The shortening of the PL lifetime could be explained by a surface states model.  相似文献   

5.
We report the structural and optical properties of copper aluminium oxide (CuAlO2) thin films, which were prepared on c-plane sapphire substrates by the radio frequency magnetron sputtering method. X-ray photoelectron spectroscopy (XPS) along with X-ray diffraction (XRD) analysis confirms that the films consist of delafossite CuAlO2 phase only. The optical absorption studies show the indirect and direct bandgap is 1.8 eV and 3.45 eV, respectively. Room temperature photoluminescence (PL) measurements show three emission peaks at 360 nm (3.45 eV), 470 nm (2.63 eV) and 590 nm (2.1 eV). The first one is near band edge emission while the other two are originated from defects.  相似文献   

6.
In this work, the nanocrystalline porous silicon (PS) is prepared through the simple electrochemical etching of n-type Si (1 0 0) under the illumination of a 100 W incandescent white light. SEM, AFM, Raman and PL have been used to characterize the morphological and optical properties of the PS. SEM shows uniformed circular pores with estimated sizes, which range between 100 and 500 nm. AFM shows an increase in its surface roughness (about 6 times compared to c-Si). Raman spectra of the PS show a stronger peak with FWHM=4.3 cm−1 and slight blueshift of 0.5 cm−1 compared to Si. The room temperature photoluminescence (PL) peak corresponding to red emission is observed at 639.5 nm, which is due to the nano-scaled size of silicon through the quantum confinement effect. The size of the Si nanostructures is estimated to be around 7.8 nm from a quantized state effective mass theory. Thermally untreated palladium (Pd) finger contact was deposited on the PS to form MSM photodetector. Pd/PS MSM photodetector shows lower dark (two orders of magnitude) and higher photocurrent compared to a conventional Si device. Interestingly, Pd/PS MSM photodetector exhibits 158 times higher gain compared to the conventional Si device at 2.5 V.  相似文献   

7.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

8.
There is growing interest in materials chemistry for taking advantage of the physical and chemical properties of biomolecules in the development of next generation nanoscale materials for opto-electronic applications. A biomimetic approach to materials synthesis offers the possibility of controlling size, shape, crystal structure, orientation, and organization. The great progress has been made in the control that can be exerted over optical materials synthesis using biomolecules (protein, nucleic acid)/mineral interfaces as templates for directed synthesis. We have synthesized the CdS nanocrystals using pepsin by biomimetic technique at four different set temperatures. X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) results showed that we are able to tune the size and distribution profile just by tuning the reaction (Rx) temperature and goes towards excitonic Bhor radius (2.5 nm) at low temperature (4 °C). The narrow absorption peak at 260 nm from Cd2+-pepsin complex dominates and indicates the size dispersion of the modified CdS nanoparticles are fairly monodisperse. Effective mass approximation (EMA) shows large blue-shift (~1 eV) in the band gap for the cubic phase from bulk hexagonal CdS. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra are dominated by a strong and narrow band-edge emission tunable in the blue region indicating a narrow size distribution. The reduction in PL efficiency is observed when the Rx temperature increases however no change in PLE spectra and temporal profiles of the band-edge PL is observed. At 4 °C, high emission efficiency with shift of PL spectrum in the violet region is observed for 1.7 nm size CdS quantum dots (QDs). Presence of pepsin has slowed the PL decay which is of the order of 100 μs.  相似文献   

9.
Room temperature luminescence in a CuI/AgI glass system is investigated by irradiating the system at 410 nm (3.02 eV). The spectrum peaks at 635 nm (1.95 eV) and 700 nm (1.77 eV), while the intensity is significantly enhanced (centered at 635 nm) by increasing the amount of AgI. We propose a model based on an increase in the AgI:Cu+ species at higher AgI concentration at which the red emission is attributed to the radiative recombination from carriers trapped at the donor sites (e.g., interstitial silver ions) and the acceptor sites (e.g., a vacancy-compensated divalent cation). The PL efficiency is also estimated by comparison with a standard rhodamine B solution.  相似文献   

10.
The emission at around 3.31 eV (A-line) from three types of ZnO nanocrystals with different particle sizes (10-1000 nm) was studied. The photoluminescence (PL) measurements were performed under different excitation densities and at different temperatures. The A-line emission exhibited a strong dependence on temperature and excitation power density. With increasing excitation density and temperature overlapping of the closely spaced first longitudinal optical (LO) phonon replica of free excitons by the A-line emission was observed.  相似文献   

11.
Lead sulfide (PbS) nanocrystals were formed by using Pb nanowires reacted with hydrogen sulfide (H2S) gas. The structure and composition of the as-prepared nanocrystals were confirmed by scanning electron microscopy, X-ray diffraction, transmission electron microscope and energy dispersive X-ray spectroscopy. According to the differential scanning calorimeter analysis, the PbS nanocrystals in a cubic structure owned excellent thermal stability. Furthermore, the optical properties including photoluminescence (PL) and Raman scatting spectrum were also measured. The PL emission measurement of the PbS nanocrystal showed that there was an orange-red emission peak located around 655 nm. A significant quantum confinement effect made the energy gap of PbS produce a blue shift from 0.41 eV to 1.9 eV.  相似文献   

12.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

13.
Nano-sized cerium-doped yttrium aluminum garnet (YAG:Ce) phosphors were synthesized via a simple sol-gel process using metal nitrate precursors. The prepared phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy, respectively. Pure cubic garnet phase was formed at temperatures ∼900 οC. The particle sizes of as-prepared powders were mostly in the range of 17-27 nm. The crystalline YAG:Ce showed broad emission peaks in the range of 400-700 nm and maximum intensities at 500 and 520 nm. It is found also that the emission intensity decreased with increasing Ce doping concentration from 0.1 to 1.5 at%. With increasing Ce doping concentration, the PL intensity was shifted towards shorter wavelengths.  相似文献   

14.
A multilayered Si nanocrystal-doped SiO2/Si (or Si-nc:SiO2/Si) sample structure is studied to acquire strong photoluminescence (PL) emission of Si via modulating excess Si concentration. The Si-nc:SiO2 results from SiO thin film after thermal annealing. The total thickness of SiO layer remains 150 nm, and is partitioned equally into a number of sublayers (N = 3, 5, 10, or 30) by Si interlayers. For each N-layered sample, a maximal PL intensity of Si can be obtained via optimizing the thickness of Si interlayer (or dSi). This maximal PL intensity varies with N, but the ratio of Si to O is nearly a constant. The brightest sample is found to be that of N = 10 and dSi = 1 nm, whose PL intensity is ∼5 times that of N = 1 without additional Si doping, and ∼2.5 times that of Si-nc:SiO2 prepared by co-evaporating of SiO and Si at the same optimized ratio of Si to O. Discussions are made based on PL, TEM, EDX and reflectance measurements.  相似文献   

15.
In this paper, BaMoO4 powders were prepared by the coprecipitation method and processed in a domestic microwave-hydrothermal. The obtained powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman) spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. The morphology of these powders were investigated by scanning electron microscopy (SEM). SEM micrographs showed that the BaMoO4 powders present a polydisperse particle size distribution. XRD and FT-Raman analyses revealed that the BaMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. UV-vis was employed to determine the optical band gap of this material. PL measurements at room temperature exhibited a maximum emission around 542 nm (green emission) when excited with 488 nm wavelength. This PL behavior was attributed to the existence of intrinsic distortions into the [MoO4] tetrahedron groups in the lattice.  相似文献   

16.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

17.
Zinc sulfide semiconductor nanocrystals doped Mn2+ have been synthesized via a solution-based method utilizing optimum dopant concentration (4%) and employing polyvinyl pyrrolidone (PVP) and sodium hexametapolyphosphate (SHMP) as capping agents. UV-vis absorbance spectra for all of the synthesized nanocrystals show an exitonic peak at around 310 nm. The particle size and morphology were characterized by scanning electron microscopy (SEM), FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence spectrum (PL). Diffraction data confirmed that the crystallite size is around 3-5 nm. Room temperature photoluminescence (PL) spectrum for the bare ZnS sample shows a strong band at ∼445 nm. The uncapped and capped(SHMP, PVP) ZnS:Mn2+ samples show a strong and broad band in the ∼580-585 nm range.  相似文献   

18.
Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO2) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar+ laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 °C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures.  相似文献   

19.
The present investigation reports one-step template-free hydrothermal synthesis of CuO tetrapods (CuO-T) and its characterization. The CuO tetrapods have been prepared in moderate condition without using any surfactant. The prepared sample was characterized by powder X-ray diffraction (PXRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, UV–vis–NIR (DRS) spectroscopy and Photoluminescence (PL) spectroscopy. The X-ray diffraction and Fourier transform infrared spectrum analysis confirm clearly the formation of a pure phase high-quality CuO with monoclinic crystal structure. X-ray peak broadening analysis was used to evaluate the average crystallite size (∼30 nm) and lattice strain by the Williamson–Hall (W–H) method. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) result reveals that the particles are tetrapods in shape with an average length ∼50 nm. Additionally the optical properties were investigated by using UV–vis reflectance spectra with considerable blue-shift in the optical band gap (Eg = 1.45 eV) due to quantum confinement effect. Photoluminescence (PL) spectrum showed both UV as well as visible emission peaks indicating their good optical properties.  相似文献   

20.
Synthesis of photoluminescent Si nanoparticles has been successfully prepared using an intense pulsed ion-beam evaporation (IBE) technique in vacuum. Si nanoparticles are produced by the IBE method without any post-annealings. Photoluminescence (PL) mainly in blue range with a peak of 455 nm and a shoulder near 510 nm is observed in as-deposited Si nanoparticles at room temperature. The blue light emission is relatively stable with no noticeable change, as the samples have already stored in air more than 4 months. The observed PL does not fit the quantum confinement model, since a majority of particle size is around ~20 nm, estimated by SEM and XRD measurements. Moreover, hydrofluoric acid (HF) corrosion tests on the Si nanoparticles also indicate a correlation between the presence of the surface oxide layers and the PL. Oxide-related luminescence is likely the source of this blue light emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号