首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical trapping, where microscopic particles are trapped and manipulated by light is a powerful and widespread technique, with the single-beam gradient trap (also known as optical tweezers) in use for a large number of biological and other applications. The forces and torques acting on a trapped particle result from the transfer of momentum and angular momentum from the trapping beam to the particle. Despite the apparent simplicity of a laser trap, with a single particle in a single beam, exact calculation of the optical forces and torques acting on particles is difficult. Calculations can be performed using approximate methods, but are only applicable within their ranges of validity, such as for particles much larger than, or much smaller than, the trapping wavelength, and for spherical isotropic particles. This leaves unfortunate gaps, since wavelength-scale particles are of great practical interest because they are readily and strongly trapped and are used to probe interesting microscopic and macroscopic phenomena, and non-spherical or anisotropic particles, biological, crystalline, or other, due to their frequent occurance in nature, and the possibility of rotating such objects or controlling or sensing their orientation. The systematic application of electromagnetic scattering theory can provide a general theory of laser trapping, and render results missing from existing theory. We present here calculations of force and torque on a trapped particle obtained from this theory and discuss the possible applications, including the optical measurement of the force and torque.  相似文献   

2.
Shinoj VK  Murukeshan VM 《Optics letters》2012,37(10):1607-1609
We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.  相似文献   

3.
The localized enhanced near field on nanostructures has been attracting much attention for a template for size-selective optical trapping (tweezers) beyond the diffraction limit. The near-field optical trapping has mainly been studied using metallic substrates such as Au nanodot pairs, periodic Al nanoslits, nanoapertures on an Au film, etc. In this paper, we newly propose a Mie-scattered-near-field optical trapping scheme for size-selective photocatalytic application using pairs of poly-rutile TiO2 nanospheres. The optical intensity distribution in a 3D-nanogap space between the nanospheres was simulated by a 3D FDTD method. The simulation system consists of the two TiO2 nanospheres placed on a silica substrate in water. The 400-nm excitation laser is used for both the near-field trapping and the photocatalyst excitation. The optical trapping forces were calculated based on the near-field optical intensity distribution. The trapping stiffness for 20-nm polystyrene sphere at a gap distance of 20 nm was 6.4 pN/nm/W. The optical force vector shows that the object like virus can be trapped with sufficient forces into the nanogap space and then is driven into the direct surface of the TiO2 sphere. This result suggests that this system works as a photocatalytic trapping for killing virus, protein, etc.  相似文献   

4.
Kawauchi H  Yonezawa K  Kozawa Y  Sato S 《Optics letters》2007,32(13):1839-1841
We calculated the optical trapping forces on a microscopic particle in the ray optics regime for the case where a radially polarized laser beam is applied. A higher axial trapping efficiency than for a circularly polarized doughnut beam was predicted due to the large p polarization component. Three-dimensional optical trapping was expected for particles with a larger index of refraction and for objectives with a smaller numerical aperture.  相似文献   

5.
We are investigating means of handling microparticles in microfluidic systems, in particular localized acoustic trapping of microparticles in a flow-through device. Standing ultrasonic waves were generated across a microfluidic channel by ultrasonic microtransducers integrated in one of the channel walls. Particles in a fluid passing a transducer were drawn to pressure minima in the acoustic field, thereby being trapped and confined at the lateral position of the transducer. The spatial distribution of trapped particles was evaluated and compared with calculated acoustic intensity distributions. The particle trapping was found to be strongly affected by near field pressure variations due to diffraction effects associated with the finite sized transducer element. Since laterally confining radiation forces are proportional to gradients in the acoustic energy density, these near field pressure variations may be used to get strong trapping forces, thus increasing the lateral trapping efficiency of the device. In the experiments, particles were successfully trapped in linear fluid flow rates up to 1mm/s. It is anticipated that acoustic trapping using integrated transducers can be exploited in miniaturised total chemical analysis systems (microTAS), where e.g. microbeads with immobilised antibodies can be trapped in arrays and subjected to minute amounts of sample followed by a reaction, detected using fluorescence.  相似文献   

6.
周哲海  祝连庆 《中国物理 B》2015,24(2):28704-028704
Multiple optical trapping with high-order axially symmetric polarized beams(ASPBs) is studied theoretically,and a scheme based on far-field optical trapping with ASPBs is first proposed.The focused fields and the corresponding gradient forces on Rayleigh dielectric particles are calculated for the scheme.The calculated results indicate that multiple ultra-small focused spots can be achieved,and multiple nanometer-sized particles with refractive index higher than the ambient can be trapped simultaneously near these focused spots,which are expected to enhance the capabilities of traditional optical trapping systems and provide a solution for massive multiple optical trapping of nanometer-sized particles.  相似文献   

7.
We report on double-beam optical tweezers that undergo previously unknown phase-transition-like behavior resulting in the formation of more optical traps than the number of beams used to create them. We classify the optical force fields which produce multiple traps for a double-beam system including the critical behavior. This effect is demonstrated experimentally in orthogonally polarized (noninterfering) dual-beam optical tweezers for a silica particle of 2.32 μm diameter. Phase transitions of multiple beam trapping systems have implications for hopping rates between traps and detection of forces between biomolecules using dual-beam optical tweezers. It is an example of a novel dynamic system with multiple states where force fields undergo a series of sign inversions as a function of parameters such as size and beam separation.  相似文献   

8.
Optical trapping and magnetic trapping are common micromanipulation techniques for controlling colloids including micro‐ and nanoparticles. Combining these two manipulation strategies allows a larger range of applied forces and decoupled control of rotation and translation; each of which are beneficial properties for many applications including force spectroscopy and advanced manufacturing. However, optical trapping and magnetic trapping have conflicting material requirements inhibiting the combination of these methodologies. In this paper, anisotropic microscaled particles capable of being simultaneously controlled by optical and magnetic trapping are synthesized using a glancing angle deposition (GLAD) technique. The anisotropic alignment of dielectric and ferromagnetic materials limits the optical scattering from the metallic components which typically prevents stable optical trapping in three dimensions. Compared to the current state of the art, the benefits of this approach are twofold. First, the composite structure allows larger volumes of ferromagnetic material so that larger magnetic moments may be applied without inhibiting the stability of optical trapping. Second, the robustness of the synthesis process is greatly improved. The dual optical and magnetic functionality of the synthesized colloids is demonstrated by simultaneously optically translating and magnetically rotating a magnetic GLAD particle using a custom designed optomagnetic trapping system.  相似文献   

9.
Optical tweezers, a simple and robust implementation of optical micromanipulation technologies, have become a standard tool in biological, medical and physics research laboratories. Recently, with the utilization of holographic beam shaping techniques, more sophisticated trapping configurations have been realized to overcome current challenges in applications. Holographically generated higher‐order light modes, for example, can induce highly structured and ordered three‐dimensional optical potential landscapes with promising applications in optically guided assembly, transfer of orbital angular momentum, or acceleration of particles along defined trajectories. The non‐diffracting property of particular light modes enables the optical manipulation in multiple planes or the creation of axially extended particle structures. Alongside with these concepts which rely on direct interaction of the light field with particles, two promising adjacent approaches tackle fundamental limitations by utilizing non‐optical forces which are, however, induced by optical light fields. Optoelectronic tweezers take advantage of dielectrophoretic forces for adaptive and flexible, massively parallel trapping. Photophoretic trapping makes use of thermal forces and by this means is perfectly suited for trapping absorbing particles. Hence the possibility to tailor light fields holographically, combined with the complementary dielectrophoretic and photophoretic trapping provides a holistic approach to the majority of optical micromanipulation scenarios.  相似文献   

10.
We demonstrate three-dimensional trapping of micrometer-diameter silica particles, partially coated with silver, within conventional optical tweezers. Although metallic particles are usually repelled from the beam focus by the scattering force, we show that transparent spheres partially coated with silver can be trapped with efficiencies comparable with dielectric particles. The trapping characteristics of these particles are examined as a function of metallic coverage, and the application of these particles to surface-enhanced resonance Raman scattering is investigated.  相似文献   

11.
Analytical propagation expression of a radial Airy array beam in coherent and incoherent combination passing through paraxial ABCD system is derived, and used to investigate the effect of combination scheme, array orientation and initial phase of Airy beamlet on propagation dynamics of the resulting beam in free space, where optical spot array and vortex array with different shapes are also found, respectively. And then taking four-beamlet Airy array beam in same array orientation as an example, square optical spot array obtained in focal field can be used for simultaneous trapping multiple Rayleigh particles with relative refractive index larger than 1. The transverse gradient forces serving as restore forces tend to push particles at different initial positions to their individual optical spot center. The analysis of trapping stability indicates that larger input peak intensity of Airy beamlet and smaller particle size are benefit to trapping particle owing to many deeper potential wells. Vortex array produced by coherent combined Airy array beam in this paper is expected to be useful for simultaneous trapping microparticles with relative refractive index smaller than 1.  相似文献   

12.
处于倏逝场中的微小粒子会受到辐射压力的作用而朝着倏逝场的传播方向运动,基于此原理的微小粒子驱动技术可用于介质颗粒、胶体颗粒、生物细胞等微小粒子的捕获和驱动.由于倏逝场光学微操作系统不会受到物镜焦深和激光光斑尺寸的限制,因此它比自由空间系统的优越性更强,而波导形成的光学力可以应用于长距离驱动,其仅仅受限于系统的散射和吸收...  相似文献   

13.
The assembly of particles is one of the many methods for the fabrication of organized structures in the range of micro- to nanometer sizes. These structures have potential applications in the electronic, optical and biochemical fields. Recently, many papers have reported the patterning of particles using patterned SAM (self-assembly monolayer) films and micro molding methods. We have been developing a new technique to assemble particles using an electrostatic field. This paper describes a new technique to fabricate two-dimensional microstructures assembled from 100 nm particles. Spherical silica of 900 nm diameter and aluminum of 100 nm diameter were used as the model particles. An electrostatic image was formed on an insulating substrate by drawing a focused electron beam at 10 keV. Both types of particles were deposited on the electrostatic images. In this process, the dielectrophoretic (DEP) force plays an important role in depositing particles on the electrostatic images. The DEP forces for particles in a suspension were calculated using numerical analysis. The result showed that the DEP force above the electrified region on the substrate is larger than disturbing forces, such as Brownian motion.  相似文献   

14.
We propose a scheme of optical trapping of fluorescent molecules, based on the strongly enhanced optical field due to surface plasmon resonances at laser illuminated metal tips or particles. A semiclassical approach is compared to a quantum-mechanical one. Attractive as well as repulsive forces are possible depending on the wavelength of the optical field. The trapping potential is shown to be strong enough to overcome the Brownian motion in water solution for common optical tweezer light inten-sities. Single molecule resonance Raman spectroscopy probes are particularly well suited for the trap-ping scheme. Finally we propose intracellular probing of the function of biomolecules as an application.  相似文献   

15.
We propose a simple and efficient method that uses a single focused hybrid vector beam to confine metallic Rayleigh particles at multiple positions.We study the force mechanisms of multiple trapping by analyzing the gradient and scattering forces.It is observed that the wavelength and topological charges of the hybrid vector beam regulate the trapping positions and number of optical trap sites.The proposed method can be implemented easily in three-dimensional space, and it facilitates both trapping and organization of particles.Thus, it can provide an effective and controllable means for nanoparticle manipulation.  相似文献   

16.
We report a comprehensive process for designing and prototyping new and optimized optical trapping systems. A combination of traditional lens design strategies, simulation of optical forces, and high-end ultraprecision machining of optical free-form surfaces is applied to the realization of a highly specialized optical trapping system. The resulting compact and lightweight optical modules potentially open new classes of applications for optical manipulation. As an example we present a customized 3D trapping module made of a single piece of polymethylmethacrylate, with a large working distance of 650?μm.  相似文献   

17.
We numerically investigate the optical forces exerted by an incident light beam on Rayleigh metallic particles over a dielectric substrate. In analogy with atom manipulation, we identify two different trapping regimes depending on whether the illumination is performed within the plasmon band or out of it. By adjusting the incident wavelength, the particles can be selectively guided, or immobilized, at the substrate interface.  相似文献   

18.
Mohanty SK  Mohanty KS  Berns MW 《Optics letters》2008,33(18):2155-2157
We demonstrate the use of a single fiber-optic axicon device for organization of microscopic objects using longitudinal optical binding. Further, by manipulating the shape of the fiber tip, part of the emanating light was made to undergo total internal reflection in the conical tip region, enabling near-field trapping. Near-field trapping resulted in trapping and self-organization of long chains of particles along azimuthal directions (in contrast to the axial direction, observed in the case of large tip cone angle far-field trapping).  相似文献   

19.
王玥  梁言生  严绍辉  曹志良  蔡亚楠  张艳  姚保利  雷铭 《物理学报》2018,67(13):138701-138701
传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)GerchbergSaxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.  相似文献   

20.
Based on our previous investigation of optical tweezers with dark field illumination [Chin. Phys. Left. 25(2008)329] nanoparticles at large trap depth are better viewed in wide field and real time for a long time, but with poor forces. Here we present the mismatched tube length to compensate for spherical aberration of an oil-immersion objective in a glass-water interface in an optical tweezers system for manipulating nanoparticles. In this way, the critical power of stable trapping particles is measured at different trap depths. It is found that trap depth is enlarged for trapping nanoparticles and trapping forces are enhanced at large trap depth. According to the measurement, 70-nm particles are manipulated in three dimensions and observed clearly at large appropriate depth. This will expand applications of optical tweezers in a nanometre-scale colloidal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号