首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surfactant-free nonaqueous synthesis of metal oxide nanostructures   总被引:1,自引:0,他引:1  
Surfactant-free nonaqueous (and/or nonhydrolytic) sol-gel routes constitute one of the most versatile and powerful synthesis methodologies for nanocrystalline metal oxides with high compositional homogeneity and purity. Although the synthesis protocols are particularly simple, involving only metal oxide precursors and common organic solvents, the obtained uniform nanocrystals exhibit an immense variety of sizes and shapes. The small number of reactants in these routes enables the study of the chemical mechanisms involved in metal oxide formation. Nonhydrolytic routes to inorganic nanomaterials that used surfactants as size- and shape-controlling agents have been discussed recently. This Minireview supplements this topic by discussing surfactant-free processes, which have become a valuable alternative to surfactant-assisted as well as to traditional aqueous sol-gel chemistry routes.  相似文献   

2.
A sol-gel template technique has been put forward to synthesize single-crystalline semiconductor oxide nanowires, such as n-type SnO2 and p-type NiO. Scanning electron microscopy and transmission electron microscopy observations show that the oxide nanowires are single-crystal with average diameters in the range of 100-300 nm and lengths of over 10 microm. Photoluminescence (PL) spectra show a PL emission peak at 401 nm for n-type semiconductor SnO2, and a PL emission at 407 nm for p-type semiconductor NiO nanowires, respectively. Correspondingly, the observed violet-light emission at room temperature is attributed to near-band-edge emission for SnO2 nanowires and the 3d(7)4s-->3d8 transition of Ni2+ for NiO nanowires.  相似文献   

3.
4.
5.
Ionic liquids are a new class of organic solvents with high polarity and a preorganized solvent structure. Very polar reactions can be carried out in these liquid in the absence of or with a controlled amount of water, and crystalline nanoparticles can be synthesized conveniently at ambient temperatures. The pronounced self-organization of the solvent is used in the synthesis of self-assembled, highly organized hybrid nanostructures with unparalleled quality. The extraordinary potential of ionic liquids in materials synthesis is described in this minireview and a physicochemical explanation is given.  相似文献   

6.
7.
Organic templates for the generation of inorganic materials   总被引:6,自引:0,他引:6  
Mankind's fascination with shapes and patterns, many examples of which come from nature, has greatly influenced areas such as art and architecture. Science too has long since been interested in the origin of shapes and structures found in nature. Whereas organic chemistry in general, and supramolecular chemistry especially, has been very successful in creating large superstructures of often stunning morphology, inorganic chemistry has lagged behind. Over the last decade, however, researchers in various fields of chemistry have been studying novel methods through which the shape of inorganic materials can be controlled at the micro- or even nanoscopic level. A method that has proven very successful is the formation of inorganic structures under the influence of (bio)organic templates, which has resulted in the generation of a large variety of structured inorganic structures that are currently unattainable through any other method.  相似文献   

8.
9.
10.
A great variety of metal oxide nanoparticles have been readily synthesized by using alkali metal oxides, M(2)O (M is Na or Li) and soluble metal salts (metal chlorides) in polar organic solutions, for example, methanol and ethanol, at room temperature. The oxidation states of the metals in the resulting metal oxides (Cu(2)O, CuO, ZnO, Al(2)O(3), Fe(2)O(3), Bi(2)O(3), TiO(2), SnO(2), CeO(2), Nb(2)O(5), WO(3), and CoFe(2)O(4)) range from 1 to 6 and remain invariable through the reactions where good control of stoichiometry is achieved. Metal oxide nanoparticles are 1-30 nm and have good monodispersivity and displayed comparable optical spectra. These syntheses are based on a general ion reaction pathway during which the precipitate occurs when O(2-) ions meet metal cations (M(n+)) in anhydrous solution and the reaction equation is M(n+) + n/2 O(2-) --> MO(n/2) (n=1-6).  相似文献   

11.
12.
13.
14.
In the fabrication of flexible devices, highly ordered nanoscale texturing, such as semiconductor metal oxide nanorod arrays on flexible substrates, is critical for optimal performance. Use of transparent conducting films, metallic films, and polymer substrates is limited by mechanical brittleness, chemical and thermal instability, or low electrical conductivity, low melting point, and so on. A simple and general nanocrystal-seed-directed hydrothermal route has now been developed for large-scale growth of nanorod arrays of various semiconductor metal oxides (MO), including TiO(2), ZnO, MnO(2), CuO, and ZrO(2) on both sides of flexible graphene (G) sheets to form sandwichlike MO/G/MO heterostructures. The TiO(2)/G/TiO(2) heterostructures have much higher photocatalytic activity than TiO(2) nanorods, with a photocatalytic degradation rate of methylene blue that is four times faster than that of the TiO(2) nanorods, and are thus promising candidates for photocatalytic decontamination.  相似文献   

15.
16.
Colloids embedded in a silica sol-gel matrix were prepared by using fully alloyed Pd-Au colloids, and pure Pd and Au colloids stabilized with tetraalkylammonium bromide following a modified sol-gel procedure with tetrahydrofuran (THF) as the solvent. Tetraethoxysilicate (TEOS) was used as the precursor for the silica support. The molar composition of the sol was TEOS/THF/H2O/HCl = 1:3.5:4:0.05 for the bimetallic Pd-Au and TEOS/THF/H2O/HCl = 1:4.5:4:0.02 for Pd and Au monometallic systems. After refluxing, the colloid was added as a 4.5 wt % solution in THF for Pd-Au, 10.2 wt % solution in THF for Pd and 8.4 wt % solution in THF for Au at room temperature. The gelation was carried out with vigorous stirring (4 days) under an Ar atmosphere. Following these procedures, bimetallic Pd-Au-SiO2 catalysts with 0.6 and 1 wt % metal, and monometallic Pd- and Au-SiO2 catalysts with 1 wt % metal were prepared. These materials were further treated following four different routes: 1) by simple drying, 2) in which the dried catalysts were calcined in air at 723 K and then reduced at the same temperature, 3) in which they were directly reduced in hydrogen at 723 K, and 4) in which the surfactant was extracted using an ethanol-heptane azeotropic mixture. The catalysts were characterized by nitrogen adsorption-desorption isotherms at 77 K, H2 chemisorption measurements, solid-state 1H, 13C, 29Si-CP/MAS-NMR spectroscopy, powder X-ray diffraction (XRD), small angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and 197Au M?ssbauer spectroscopy. The physical characterization by a combination of these techniques has shown that the size and the structural characteristics of the Pd-Au colloid precursor are preserved when embedded in an SiO2 matrix. Catalytic tests were carried out in selective hydrogenation of 3-hexyn-1-ol, cinnamaldehyde, and styrene. These data showed evidence that alloying Pd with Au in bimetallic colloids leads to enhanced activity and most importantly to improved selectivity. Also, the combination of the two metals resulted in catalysts that were very stable against poisoning, as was evidenced for the hydrogenation of styrene in the presence of thiophene.  相似文献   

17.
A quick protocol for the fabrication of ultrahigh density arrays of toroidal ZnO nanostructures with tailored structures on a substrate surface is presented based on the one-step spin coating of a common solution composed of inverse micelles of polystyrene-block-poly(4-vinyl pyridine) copolymers (PS-b-P4VP) and sol-gel precursors without the need of conventional complex lithographic techniques. ZnO toroids decorated with gold nanoparticles are also obtained by subsequent loading and reduction of metallic precursors. It was elucidated that the diethanolamine moiety in the sol-gel precursors, which induces selective swelling and structural reorganization of the P4VP core blocks, plays a key role in the generation of toroidal nanostructures. Toroidal ZnO nanostructures embedded in a PS-b-P4VP matrix films or arrays of pure wurtzite ZnO nanorings are obtained by calcination under inert atmosphere. The structural parameters of the toroidal nanostructures such as the width, height, diameter of the rims as well as the spacing of their 2D arrays are controlled by employing PS-b-P4VP with different molecular weight and varying the mixing protocols.  相似文献   

18.
19.
20.
A non-aqueous sol-gel Al-based fluoride has been subjected to the microwave solvothermal process. The final material depends on the temperature heat treatment used. Three types of material have been prepared: 1) for low temperature heat treatment (90 degrees C) X-ray amorphous alkoxy fluoride was obtained; 2) for the highest temperature used (200 degrees C) the metastable form beta-AlF3 was obtained with a very large surface area of 125 m2 g(-1). The mechanism of the amorphous=crystalline transformation has been rationalised by the occurrence of a decomposition reaction of the gel fluoride induced by the microwave irradiation. 3) Finally, at intermediate temperature (180 degrees C) a multi-component material mixture exhibiting a huge surface area of 525 m2 g(-1) has been obtained and further investigated after mild post-treatment fluorination using F2 gas. The resulting aluminium-based fluoride still possesses a high-surface-area of 330 m2 g(-1). HRTEM revealed that the solid is built from large particles (50 nm) identified as alpha-AlF3, and small ones (10 nm), relative to an unidentified phase. This new high-surface-area material exhibits strong Lewis acidity as revealed by pyridine adsorption and catalytic tests. By comparison with other materials, it has been shown that whatever the composition/structure of the Al-based fluoride materials, the number of strong Lewis acid sites is related to the surface area, highlighting the role of surface reconstruction occurring on a nanoscopic scale on the formation of the strongest Lewis acid sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号