首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.  相似文献   

2.
In [A new nonlinear Uzawa algorithm for generalized saddle point problems, Appl. Math. Comput., 175(2006), 1432–1454], a nonlinear Uzawa algorithm for solving symmetric saddle point problems iteratively, which was defined by two nonlinear approximate inverses, was considered. In this paper, we extend it to the nonsymmetric case. For the nonsymmetric case, its convergence result is deduced. Moreover, we compare the convergence rates of three nonlinear Uzawa methods and show that our method is more efficient than other nonlinear Uzawa methods in some cases. The results of numerical experiments are presented when we apply them to Navier-Stokes equations discretized by mixed finite elements.  相似文献   

3.
《Applied Mathematics Letters》2007,20(10):1094-1098
In this paper we discuss the convergence behavior of the nonlinear inexact Uzawa algorithm for solving saddle point problems presented in a recent paper by Cao [Z.H. Cao, Fast Uzawa algorithm for generalized saddle point problems, Appl. Numer. Math. 46 (2003) 157–171]. We show that this algorithm converges under a condition weaker than that stated in this paper.  相似文献   

4.
Recently, a class of parameterized inexact Uzawa methods has been proposed for generalized saddle point problems by Bai and Wang [Z.-Z. Bai, Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008) 2900–2932], and a generalization of the inexact parameterized Uzawa method has been studied for augmented linear systems by Chen and Jiang [F. Chen, Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput. (2008)]. This paper is concerned about a generalization of the parameterized inexact Uzawa method for solving the generalized saddle point problems with nonzero (2, 2) blocks. Some new iterative methods are presented and their convergence are studied in depth. By choosing different parameter matrices, we derive a series of existing and new iterative methods, including the preconditioned Uzawa method, the inexact Uzawa method, the SOR-like method, the GSOR method, the GIAOR method, the PIU method, the APIU method and so on. Numerical experiments are used to demonstrate the feasibility and effectiveness of the generalized parameterized inexact Uzawa methods.  相似文献   

5.
Summary. In this paper we consider additive Schwarz-type iteration methods for saddle point problems as smoothers in a multigrid method. Each iteration step of the additive Schwarz method requires the solutions of several small local saddle point problems. This method can be viewed as an additive version of a (multiplicative) Vanka-type iteration, well-known as a smoother for multigrid methods in computational fluid dynamics. It is shown that, under suitable conditions, the iteration can be interpreted as a symmetric inexact Uzawa method. In the case of symmetric saddle point problems the smoothing property, an important part in a multigrid convergence proof, is analyzed for symmetric inexact Uzawa methods including the special case of the additive Schwarz-type iterations. As an example the theory is applied to the Crouzeix-Raviart mixed finite element for the Stokes equations and some numerical experiments are presented. Mathematics Subject Classification (1991):65N22, 65F10, 65N30Supported by the Austrian Science Foundation (FWF) under the grant SFB F013}\and Walter Zulehner  相似文献   

6.
An improvement on a generalized preconditioned Hermitian and skew-Hermitian splitting method (GPHSS), originally presented by Pan and Wang (J. Numer. Methods Comput. Appl. 32, 174–182, 2011), for saddle point problems, is proposed in this paper and referred to as IGPHSS for simplicity. After adding a matrix to the coefficient matrix on two sides of first equation of the GPHSS iterative scheme, both the number of required iterations for convergence and the computational time are significantly decreased. The convergence analysis is provided here. As saddle point problems are indefinite systems, the Conjugate Gradient method is unsuitable for them. The IGPHSS is compared with Gauss-Seidel, which requires partial pivoting due to some zero diagonal entries, Uzawa and GPHSS methods. The numerical experiments show that the IGPHSS method is better than the original GPHSS and the other two relevant methods.  相似文献   

7.
本文提出了一类求解大型稀疏鞍点问题的新的广义不精确Uzawa算法.该方法不仅可以包含 前人的方法, 而且可以拓展出很多新方法. 理论分析给出该方法收敛的条件, 并详细的分析了其收敛性质和参数矩阵的选取方法. 通过对有限元离散的Stokes问题的数值实验表明, 新方法是行之有效的, 其收敛速度明显优于原来的算法.  相似文献   

8.
For any continuous bilinear form defined on a pair of Hilbert spaces satisfying the compatibility Ladyshenskaya–Babušca–Brezzi condition, symmetric Schur complement operators can be defined on each of the two Hilbert spaces. In this paper, we find bounds for the spectrum of the Schur operators only in terms of the compatibility and continuity constants. In light of the new spectral results for the Schur complements, we review the classical Babušca–Brezzi theory, find sharp stability estimates, and improve a convergence result for the inexact Uzawa algorithm. We prove that for any symmetric saddle point problem, the inexact Uzawa algorithm converges, provided that the inexact process for inverting the residual at each step has the relative error smaller than 1/3. As a consequence, we provide a new type of algorithm for discretizing saddle point problems, which combines the inexact Uzawa iterations with standard a posteriori error analysis and does not require the discrete stability conditions.  相似文献   

9.
A unilateral contact 2D-problem is considered provided one of two elastic bodies can shift in a given direction as a rigid body. Using Lagrange multipliers for both normal and tangential constraints on the contact interface, we introduce a saddle point problem and prove its unique solvability. We discretize the problem by a standard finite element method and prove a convergence of approximations. We propose a numerical realization on the basis of an auxiliary “ bolted” problem and the algorithm of Uzawa.  相似文献   

10.
In this work, we consider numerical methods for solving a class of block three‐by‐three saddle‐point problems, which arise from finite element methods for solving time‐dependent Maxwell equations and some other applications. The direct extension of the Uzawa method for solving this block three‐by‐three saddle‐point problem requires the exact solution of a symmetric indefinite system of linear equations at each step. To avoid heavy computations at each step, we propose an inexact Uzawa method, which solves the symmetric indefinite linear system in some inexact way. Under suitable assumptions, we show that the inexact Uzawa method converges to the unique solution of the saddle‐point problem within the approximation level. Two special algorithms are customized for the inexact Uzawa method combining the splitting iteration method and a preconditioning technique, respectively. Numerical experiments are presented, which demonstrated the usefulness of the inexact Uzawa method and the two customized algorithms.  相似文献   

11.
In the paper, a new alternating-direction iterative method is proposed based on matrix splittings for solving saddle point problems. The convergence analysis for the new method is given. When the better values of parameters are employed, the proposed method has faster convergence rate and less time cost than the Uzawa algorithm with the optimal parameter and the Hermitian and skew-Hermitian splitting iterative method. Numerical examples further show the effectiveness of the method.  相似文献   

12.
In this paper, we first present a class of structure-oriented hybrid two-stage iteration methods for solving the large and sparse blocked system of linear equations, as well as the saddle point problem as a special case. And the new methods converge to the solution under suitable restrictions, for instance, when the coefficient matrix is positive stable matrix generally. Numerical experiments for a model generalized saddle point problem are given, and the results show that our new methods are feasible and efficient, and converge faster than the Classical Uzawa Method.  相似文献   

13.
In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is presented and the upper bounds of the convergence rates are derived.Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm,the convergence rate is uniformly bounded away from 1 if τh^-2 is kept bounded,where τ is the time step size and h the space mesh size.  相似文献   

14.
This paper deals with a modified nonlinear inexact Uzawa (MNIU) method for solving the stabilized saddle point problem. The modified Uzawa method is an inexact inner-outer iteration with a variable relaxation parameter and has been discussed in the literature for uniform inner accuracy. This paper focuses on the general case when the accuracy of inner iteration can be variable and the convergence of MNIU with variable inner accuracy, based on a simple energy norm. Sufficient conditions for the convergence of MNIU are proposed. The convergence analysis not only greatly improves the existing convergence results for uniform inner accuracy in the literature, but also extends the convergence to the variable inner accuracy that has not been touched in literature. Numerical experiments are given to show the efficiency of the MNIU algorithm.  相似文献   

15.
The parameterized Uzawa preconditioners for saddle point problems are studied in this paper. The eigenvalues of the preconditioned matrix are located in (0, 2) by choosing the suitable parameters. Furthermore, we give two strategies to optimize the rate of convergence by finding the suitable values of parameters. Numerical computations show that the parameterized Uzawa preconditioners can lead to practical and effective preconditioned GMRES methods for solving the saddle point problems.  相似文献   

16.
In this paper, we consider iterative algorithms of Uzawa type for solving linear nonsymmetric saddle point problems. Specifically, we consider systems, written as usual in block form, where the upper left block is an invertible linear operator with positive definite symmetric part. Such saddle point problems arise, for example, in certain finite element and finite difference discretizations of Navier-Stokes equations, Oseen equations, and mixed finite element discretization of second order convection-diffusion problems. We consider two algorithms, each of which utilizes a preconditioner for the operator in the upper left block. Convergence results for the algorithms are established in appropriate norms. The convergence of one of the algorithms is shown assuming only that the preconditioner is spectrally equivalent to the inverse of the symmetric part of the operator. The other algorithm is shown to converge provided that the preconditioner is a sufficiently accurate approximation of the inverse of the upper left block. Applications to the solution of steady-state Navier-Stokes equations are discussed, and, finally, the results of numerical experiments involving the algorithms are presented.

  相似文献   


17.
Nicolae Pop 《PAMM》2008,8(1):10985-10986
After finite element discretization of the elastic contact problems with friction, we obtain a big sparse non–symmetric and nonlinear systems of equations, and in many cases ill–conditioned. Solving these systems by direct methods or classical iterative methods are non efficient and with bad convergence properties. One way to overcome these difficulties is to use the preconditioned Uzawa–type algorithms. On this paper we focus on the transformation of the generalized Signorini elastic contact problems into a saddle point problem of some augmented Lagrangian functional and give a preconditioning technique for Uzawa algorithm. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
对于一个多类别的网络均衡问题,可以通过计算某个辅助问题的容量限制约束相应的乘子向量得到有效收费.本文通过计算拉格朗日函数的鞍点来计算乘子向量.借助于广义拉格朗日函数的稳定性和Uzawa算法非精确解的收敛性,得到鞍点序列的收敛性.其中离散化方法用于最小化广义拉格朗日函数的计算.  相似文献   

19.
In this paper, we introduce and analyze Uzawa algorithms for non-symmetric saddle point systems. Convergence for the algorithms is established based on new spectral results about Schur complements. A new Uzawa type algorithm with optimal relaxation parameters at each new iteration is introduced and analyzed in a general framework. Numerical results supporting the efficiency of the algorithms are presented for finite element discretization of steady state Navier-Stokes equations.  相似文献   

20.
Huang  Na 《Numerical Algorithms》2020,85(4):1233-1254

In this work, we consider numerical methods for solving a class of block three-by-three saddle point problems, which arise from finite element methods for solving time-dependent Maxwell equations and a class of quadratic programs. We present a variant of Uzawa method with two variable parameters for the saddle point problems. These two parameters can be updated easily in each iteration, similar to the evaluation of the two iteration parameters in the conjugate gradient method. We show that the new iterative method converges to the unique solution of the saddle point problems under a reasonable condition. Numerical experiments highlighting the performance of the proposed method for problems are presented.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号