首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the effectiveness of two different Algebraic Multigrid (AMG) approaches to the solution of 4th‐order discrete‐difference equations for incompressible fluid flow (in this case for a discrete, scalar, stream‐function field). One is based on a classical, algebraic multigrid, method (C‐AMG) the other is based on a smoothed‐aggregation method for 4th‐order problems (SA‐AMG). In the C‐AMG case, the inter‐grid transfer operators are enhanced using Jacobi relaxation. In the SA‐AMG case, they are improved using a constrained energy optimization of the coarse‐grid basis functions. Both approaches are shown to be effective for discretizations based on uniform, structured and unstructured, meshes. They both give good convergence factors that are largely independent of the mesh size/bandwidth. The SA‐AMG approach, however, is more costly both in storage and operations. The Jacobi‐relaxed C‐AMG approach is faster, by a factor of between 2 and 4 for two‐dimensional problems, even though its reduction factors are inferior to those of SA‐AMG. For non‐uniform meshes, the accuracy of this particular discretization degrades from 2nd to 1st order and the convergence factors for both methods then become mesh dependent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, an iterative solution method for a fourth‐order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in (SIAM J. Sci. Comput. 2006; 27 :1471–1492), where multigrid was employed as a preconditioner for a Krylov subspace iterative method. The multigrid preconditioner is based on the solution of a second Helmholtz operator with a complex‐valued shift. In particular, we compare preconditioners based on a point‐wise Jacobi smoother with those using an ILU(0) smoother, we compare using the prolongation operator developed by de Zeeuw in (J. Comput. Appl. Math. 1990; 33 :1–27) with interpolation operators based on algebraic multigrid principles, and we compare the performance of the Krylov subspace method Bi‐conjugate gradient stabilized with the recently introduced induced dimension reduction method, IDR(s). These three improvements are combined to yield an efficient solver for heterogeneous problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The quality of the mesh used in the finite element discretizations will affect the efficiency of solving the discreted linear systems. The usual algebraic solvers except multigrid method do not consider the effect of the grid geometry and the mesh quality on their convergence rates. In this paper, we consider the hierarchical quadratic discretizations of three‐dimensional linear elasticity problems on some anisotropic hexahedral meshes and present a new two‐level method, which is weakly independent of the size of the resulting problems by using a special local block Gauss–Seidel smoother, that is LBGS_v iteration when used for vertex nodes or LBGS_m iteration for midside nodes. Moreover, we obtain the efficient algebraic multigrid (AMG) methods by applying DAMG (AMG based on distance matrix) or DAMG‐PCG (PCG with DAMG as a preconditioner) to the solution of the coarse level equation. The resulting AMG methods are then applied to a practical example as a long beam. The numerical results verify the efficiency and robustness of the proposed AMG algorithms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The idea of using polynomial methods to improve simple smoother iterations within a multigrid method for a symmetric positive definite system is revisited. A two-level bound going back to Hackbusch is optimized by a very simple iteration, a close cousin of the Chebyshev semi-iterative method, but based on the Chebyshev polynomials of the fourth instead of first kind. A full V-cycle bound for general polynomial smoothers is derived using the V-cycle theory of McCormick. The fourth-kind Chebyshev iteration is quasi-optimal for the V-cycle bound. The optimal polynomials for the V-cycle bound can be found numerically, achieving about an 18% lower error contraction factor bound than the fourth-kind Chebyshev iteration, asymptotically as the number of smoothing steps k $$ k\to \infty $$ . Implementation of the optimized iteration is discussed, and the performance of the polynomial smoothers is illustrated with numerical examples.  相似文献   

5.
In this paper, we employ local Fourier analysis (LFA) to analyze the convergence properties of multigrid methods for higher‐order finite‐element approximations to the Laplacian problem. We find that the classical LFA smoothing factor, where the coarse‐grid correction is assumed to be an ideal operator that annihilates the low‐frequency error components and leaves the high‐frequency components unchanged, fails to accurately predict the observed multigrid performance and, consequently, cannot be a reliable analysis tool to give good performance estimates of the two‐grid convergence factor. While two‐grid LFA still offers a reliable prediction, it leads to more complex symbols that are cumbersome to use to optimize parameters of the relaxation scheme, as is often needed for complex problems. For the purposes of this analytical optimization as well as to have simple predictive analysis, we propose a modification that is “between” two‐grid LFA and smoothing analysis, which yields reasonable predictions to help choose correct damping parameters for relaxation. This exploration may help us better understand multigrid performance for higher‐order finite element discretizations, including for Q2Q1 (Taylor‐Hood) elements for the Stokes equations. Finally, we present two‐grid and multigrid experiments, where the corrected parameter choice is shown to yield significant improvements in the resulting two‐grid and multigrid convergence factors.  相似文献   

6.
We study smoothers for the multigrid method of the second kind arising from Fredholm integral equations. Our model problems use nonlocal governing operators that enforce local boundary conditions. For discretization, we utilize the Nyström method with the trapezoidal rule. We find the eigenvalues of matrices associated to periodic, antiperiodic, and Dirichlet problems in terms of the nonlocality parameter and mesh size. Knowing explicitly the spectrum of the matrices enables us to analyze the behavior of smoothers. Although spectral analyses exist for finding effective smoothers for 1D elliptic model problems, to the best of our knowledge, a guiding spectral analysis is not available for smoothers of a multigrid of the second kind. We fill this gap in the literature. The Picard iteration has been the default smoother for a multigrid of the second kind. Jacobi‐like methods have not been considered as viable options. We propose two strategies. The first one focuses on the most oscillatory mode and aims to damp it effectively. For this choice, we show that weighted‐Jacobi relaxation is equivalent to the Picard iteration. The second strategy focuses on the set of oscillatory modes and aims to damp them as quickly as possible, simultaneously. Although the Picard iteration is an effective smoother for model nonlocal problems under consideration, we show that it is possible to find better than ones using the second strategy. We also shed some light on internal mechanism of the Picard iteration and provide an example where the Picard iteration cannot be used as a smoother.  相似文献   

7.
Higher order finite element discretizations, although providing higher accuracy, are considered to be computationally expensive and of limited use for large‐scale problems. In this paper, we have developed an efficient iterative solver for solving large‐scale quadratic finite element problems. The proposed approach shares some common features with geometric multigrid methods but does not need structured grids to create the coarse problem. This leads to a robust method applicable to finite element problems discretized by unstructured meshes such as those from adaptive remeshing strategies. The method is based on specific properties of hierarchical quadratic bases. It can be combined with an algebraic multigrid (AMG) preconditioner or with other algebraic multilevel block factorizations. The algorithm can be accelerated by flexible Krylov subspace methods. We present some numerical results on the convection–diffusion and linear elasticity problems to illustrate the efficiency and the robustness of the presented algorithm. In these experiments, the performance of the proposed method is compared with that of an AMG preconditioner and other iterative solvers. Our approach requires less computing time and less memory storage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present a multigrid V‐cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix–Raviart discretization of second‐order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We showed that the convergence rates of the (multiplicative) two‐grid and multigrid V‐cycle algorithms will deteriorate rapidly because of large jumps in coefficient. However, the preconditioned systems have only a fixed number of small eigenvalues depending on the large jump in coefficient, and the effective condition numbers are independent of the coefficient and bounded logarithmically with respect to the mesh size. As a result, the two‐grid or multigrid preconditioned conjugate gradient algorithm converges nearly uniformly. We also comment on some major differences of the convergence theory between the nonconforming case and the standard conforming case. Numerical experiments support the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes and analyzes a class of multigrid smoothers called the parallel multiplicative (PM) smoother by subspace decomposition techniques. It shows that the well known additive and multiplicative smoothers and the JSOR smoother are special cases of the PM smoother, and their smoothing properties can be obtained directly from the PM analysis. Moreover, numerical results are presented in this paper to show that the JSOR smoother is more robust and effective than the damped Jacobi smoother on current MIMD parallel computers. AMS subject classification (2000) 65N55, 65Y05.Received May 2004. Revised September 2004. Communicated by Per Lötstedt.Dexuan Xie: This work was partially supported by the National Science Foundation through grant DMS-0241236.  相似文献   

10.
This paper presents the results of numerical experiments on the use of equal‐order and mixed‐order interpolations in algebraic multigrid (AMG) solvers for the fully coupled equations of incompressible fluid flow. Several standard test problems are addressed for Reynolds numbers spanning the laminar range. The range of unstructured meshes spans over two orders of problem size (over one order of mesh bandwidth). Deficiencies in performance are identified for AMG based on equal‐order interpolations (both zero‐order and first‐order). They take the form of poor, fragile, mesh‐dependent convergence rates. The evidence suggests that a degraded representation of the inter‐field coupling in the coarse‐grid approximation is the cause. Mixed‐order interpolation (first‐order for the vectors, zero‐order for the scalars) is shown to address these deficiencies. Convergence is then robust, independent of the number of coarse grids and (almost) of the mesh bandwidth. The AMG algorithms used are reviewed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Since their popularization in the late 1970s and early 1980s, multigrid methods have been a central tool in the numerical solution of the linear and nonlinear systems that arise from the discretization of many PDEs. In this paper, we present a local Fourier analysis (LFA, or local mode analysis) framework for analyzing the complementarity between relaxation and coarse‐grid correction within multigrid solvers for systems of PDEs. Important features of this analysis framework include the treatment of arbitrary finite‐element approximation subspaces, leading to discretizations with staggered grids, and overlapping multiplicative Schwarz smoothers. The resulting tools are demonstrated for the Stokes, curl–curl, and grad–div equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we consider the convergence rate of a smoothed aggregation algebraic multigrid method, which uses a simple polynomial (1 ? t)ν or an optimal Chebyshev‐like polynomial to construct the smoother and prolongation operator. The result is purely algebraic, whereas a required main weak approximation property of the tentative interpolation operator is verified for a spectral element agglomeration version of the method. More specifically, we prove that, for partial differential equations (PDEs), the two‐grid method converges uniformly without any regularity assumptions. Moreover, the convergence rate improves uniformly when the degree of the polynomials used for the smoother and the prolongation increases. Such a result, as is well‐known, would imply uniform convergence of the multilevel W‐cycle version of the algorithm. Numerical results, for both PDE and non‐PDE (graph Laplacian) problems are presented to illustrate the theoretical findings. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
We present a parallel multigrid solver on locally refined meshes for solving very complex three‐dimensional flow problems. Besides describing the parallel implementation in detail, we prove the smoothing property of the suggested iteration for a simple model problem. For demonstration of the efficiency and feasibility of the solver, we show a chemically reactive flow simulation for a Methane burner using detailed chemical reaction modeling. Further, we give the results of an ocean flow simulation. All described methods are implemented in the finite element toolbox Gascoigne. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We focus on the study of multigrid methods with aggressive coarsening and polynomial smoothers for the solution of the linear systems corresponding to finite difference/element discretizations of the Laplace equation. Using local Fourier analysis we determine automatically the optimal values for the parameters involved in defining the polynomial smoothers and achieve fast convergence of cycles with aggressive coarsening. We also present numerical tests supporting the theoretical results and the heuristic ideas. The methods we introduce are highly parallelizable and efficient multigrid algorithms on structured and semi-structured grids in two and three spatial dimensions.  相似文献   

15.
We consider the convergence theory of adaptive multigrid methods for second-order elliptic problems and Maxwell's equations. The multigrid algorithm only performs pointwise Gauss-Seidel relaxations on new degrees of freedom and their "immediate" neighbors. In the context of lowest order conforming finite element approximations, we present a unified proof for the convergence of adaptive multigrid V-cycle algorithms. The theory applies to any hierarchical tetrahedral meshes with uniformly bounded shape-regularity measures. The convergence rates for both problems are uniform with respect to the number of mesh levels and the number of degrees of freedom. We demonstrate our convergence theory by two numerical experiments.  相似文献   

16.
求解三维高次拉格朗日有限元方程的代数多重网格法   总被引:5,自引:0,他引:5  
孙杜杜  舒适 《计算数学》2005,27(1):101-112
本文针对带有间断系数的三维椭圆问题,讨论任意四面体剖分下的二次拉格朗日有限元方程的代数多重网格法.通过分析线性和高次有限元空间之间的关系,我们给出了一种新的网格粗化算法和构造提升算子的代数途径.进一步,我们还对新的代数多重网格法给出了收敛性分析.数值实验表明这种代数多重网格法对求解二次拉格朗日有限元方程是健壮和有效的。  相似文献   

17.
We design and analyze V‐cycle multigrid methods for an H(div) problem discretized by the lowest‐order Raviart–Thomas hexahedral element. The smoothers in the multigrid methods involve nonoverlapping domain decomposition preconditioners that are based on substructuring. We prove uniform convergence of the V‐cycle methods on bounded convex hexahedral domains (rectangular boxes). Numerical experiments that support the theory are also presented.  相似文献   

18.
We introduce a multigrid algorithm for the solution of a second order elliptic equation in three dimensions. For the approximation of the solution we use a partially ordered hierarchy of finite-volume discretisations. We show that there is a relation with semicoarsening and approximation by more-dimensional Haar wavelets. By taking a proper subset of all possible meshes in the hierarchy, a sparse grid finite-volume discretisation can be constructed.The multigrid algorithm consists of a simple damped point-Jacobi relaxation as the smoothing procedure, while the coarse grid correction is made by interpolation from several coarser grid levels.The combination of sparse grids and multigrid with semi-coarsening leads to a relatively small number of degrees of freedom,N, to obtain an accurate approximation, together with anO(N) method for the solution. The algorithm is symmetric with respect to the three coordinate directions and it is fit for combination with adaptive techniques.To analyse the convergence of the multigrid algorithm we develop the necessary Fourier analysis tools. All techniques, designed for 3D-problems, can also be applied for the 2D case, and — for simplicity — we apply the tools to study the convergence behaviour for the anisotropic Poisson equation for this 2D case.  相似文献   

19.
We consider H(curl, Ω)-elliptic variational problems on bounded Lipschitz polyhedra and their finite element Galerkin discretization by means of lowest order edge elements. We assume that the underlying tetrahedral mesh has been created by successive local mesh refinement, either by local uniform refinement with hanging nodes or bisection refinement. In this setting we develop a convergence theory for the the so-called local multigrid correction scheme with hybrid smoothing. We establish that its convergence rate is uniform with respect to the number of refinement steps. The proof relies on corresponding results for local multigrid in a H^1 (Ω)-context along with local discrete Helmholtz-type decompositions of the edge element space.  相似文献   

20.
In many large‐scale computations, systems of equations arise in the form Au = b, where A is a linear operation to be performed on the unknown data u, producing the known right‐hand side, b, which represents some constraint of known or assumed behavior of the system being modeled. Because such systems can be very large, solving them directly can be too slow. In contrast, a multigrid method removes different components of the error at different resolutions using smoothers that reduce high‐frequency components of the error more readily than low. Here, we present an open‐source multigrid solver written only in Python. OpenMG is a pure Python experimentation environment for testing multigrid concepts, not a production solver. The particular restriction method implemented is for ‘standard’ multigrid. By making the code simple and modular, we make the algorithmic details clear. The resulting solver is tested on an implicit pressure reservoir simulation problem with satisfactory results.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号