首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
优化重聚脉冲提高梯度场核磁共振信号强度   总被引:1,自引:0,他引:1       下载免费PDF全文
李新  肖立志  刘化冰  张宗富  郭葆鑫  于慧俊  宗芳荣 《物理学报》2013,62(14):147602-147602
缩短射频脉冲宽度, 有助于解决脉冲电力消耗大、样品吸收率高、信噪比低等极端条件核磁共振探测的关键问题. 本文首先分析射频脉冲角度对核磁共振自旋回波信号强度的影响机理, 基于Bloch方程推导了回波信号幅度与扳转角、重聚角的关系. 在特制核磁共振分析仪上采用变脉冲角度技术, 分别在均匀磁场和梯度磁场条件下实现对扳转角和重聚角与回波信号强度关系的数值模拟和实验测量. 结果表明, 梯度场中, 扳转角为90°、重聚角为140°的射频脉冲组合获得最大首波信号强度, 比180°脉冲对应的回波幅值提高13%, 能耗降低至78%. 选用该重聚角(140°) 优化设计饱和恢复脉冲序列探测流体的纵向弛豫时间T1特性, 准确获得 T1分布.该结果对于低电力供应、且对信噪比有较高要求的核磁共振测量, 如随钻核磁共振测井和在线核磁共振快速检测等, 具有重要意义. 关键词: 核磁共振 信号强度 重聚脉冲角度 Bloch方程  相似文献   

2.
Water located outside the NMR detection coil experiences a reduced RF field intensity. This "faraway water" is known to be very difficult to suppress and often gives rise to a large residual solvent signal. Pre-SAT180 (Pre-Saturation with Adiabatic Toggling of 180 degree pulse inversion) is proposed to cancel the residual water contribution efficiently. Compared with several popular methods such as 1D NOESY with pre-saturation or 270 degrees excitation, Pre-SAT180 has a number of advantages, including: full retention of signal intensity and selectivity, good phase properties, easy setup, and high tolerance to pulse missettings.  相似文献   

3.
Two derivatives of the wideband alternating-phase low-power technique for zero-residual splitting (WALTZ)-4 decoupling sequence for broadband decoupling named WALTZ-4a and WALTZ-4b were compared for their proton decoupling performance in 31P nuclear magnetic resonance (NMR) spectroscopy using a Siemens Magnetom SP 1.5 T whole-body imager. Version WALTZ-4a originally implemented by the manufacturer doubles and triples the transmitter amplitude of the 90° pulse to achieve the 180° and 270° flip angle required for one composite pulse R in the WALTZ sequence. WALTZ-4b follows the sequence reported from Shaka et al. and leaves the transmitter amplitude constant but increases the durations of the 180° and 270° pulses. The decoupling performance of WALTZ-4b is superior because it requires less transmitter power and, therefore, it is advantageous in all in vivo studies where a low specific absorption rate is desired. When WALTZ-4 is used in combination with a surface coil for transmission the theoretically required flip angles cannot be achieved in the entire sensitive volume of the coil. The decoupling performance was therefore investigated at lower and higher flip angles. Again, WALTZ-4b is advantageous and provides, in certain ranges that are off-resonant from the decoupling frequency, a good decoupling quality even for flip angles that are only 60% of the theoretically required.  相似文献   

4.
Three techniques were considered for reducing the RF (radiofrequency) power deposition in the body while maintaining scan time efficiency: reducing the RF peak amplitude while increasing the pulse width, substituting gradient echoes for spin echoes, and reducing the flip angle of the phase reversal pulse. The use of gradient echoes was found to be the most efficient means to reduce the power delivered to the patient and to obtain rapid data acquisition. The effect upon SAR (specific absorption rate) and SNR (signal-to-noise ratio) was demonstrated on a phantom when the phase reversal pulse was reduced from the standard 180 degrees to 90 degrees. Data in the body indicated a fairly constant SNR down to a refocusing flip angle between 110 degrees and 135 degrees. An initial clinical evaluation was performed at three institutions using the method of reducing the flip angle of the phase reversal pulse. The scan with theta = 120 degrees was rated by readers in a blinded study as having acceptable diagnostic image quality while the 135 degrees scan had comparable image quality to a conventional 90 degrees - 180 degrees pulse sequence. The use of reduced phase reversal pulses was seen as an efficient protocol to obtain T1-weighted images at rapid data rates while reducing the power delivered to the body by about 40%.  相似文献   

5.
A study was undertaken to assess the use of excitation flip angles greater than 90° for T1 weighted spin-echo (SE) imaging with a single 180° refocusing pulse and short TR values. Theoretical predictions of signal intensity for SE images with excitation pulse angles of 90–180° were calculated based on the Bloch equations and then measured experimentally from MR images of MnCl2 phantoms of various concentrations. Liver signal-to-noise ratios (SNR) and liver-spleen contrast-to-noise ratios (CNR) were measured from breathhold MR images of the upper abdomen in 16 patients using 90 and 110° excitation flip angles. The theoretical predictions showed significant improvements in SNR with excitation flip angles >90°, which were more pronounced at small TR values. The phantom studies showed reasonably good agreement with the theoretical predictions in correlating the excitation pulse angle with signal intensity. In the human imaging studies, the 110° excitation pulse angle resulted in a 7.4% (p < .01) increase in liver SNR and an 8.2% (p = .2) increase in liver-spleen CNR compared to the 90° pulse angle at TR = 275 ms. Increased signal intensity resulting from the use of large flip angle excitation pulses with a single echo SE pulse sequence was predicted and confirmed experimentally in phantoms and humans.  相似文献   

6.
A novel method for mapping the longitudinal relaxation time in a clinically acceptable time is developed based on a recent proposal [J.-J. Hsu, I.J. Lowe, Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization, J. Magn. Reson. 169 (2004) 270-278] and the speed of the spiral pulse sequence. The method acquires multiple curve-fitting samples with one RF pulse train. It does not require RF pulses of specific flip angles (e.g., 90 degrees or 180 degrees ), nor are the long recovery waiting time and the measurement of the magnetization at thermal equilibrium needed. Given the value of the flip angle, the curve fitting is semi-logarithmic and not computationally intensive. On a heterogeneous phantom, the average percentage difference between measurements of the present method and those of an inversion-recovery method is below 2.7%. In mapping the human brain, the present method, for example, can obtain four curve-fitting samples for five 128 x 128 slices in less than 3.2s and the results are in agreement with other studies in the literature.  相似文献   

7.
The effects of varying the inversion or excitation RF pulse flip angles on image contrast and imaging time have been investigated in IR imaging theoretically, with phantoms and with normal volunteers. Signal intensity in an IR pulse sequence as a function of excitation, inversion and refocusing pulse flip angles was calculated from the solution to the Bloch equations and was utilized to determine the contrast behavior of a lesion/liver model. Theoretical and experimental results were consistent with each other. With the TI chosen to suppress the fat signal, optimization of the excitation pulse flip angle results in an increase in lesion/liver contrast or allows reduction in imaging time which, in turn, can be traded for an increased number of averages. This, in normal volunteers, improved spleen/liver contrast-to-noise ratio (9.0 vs. 5.7, n = 8, p less than 0.01) and suppressed respiratory ghosts by 33% (p less than 0.01). Reducing or increasing the inversion pulse from 180 degrees results in shorter TI needed to null the signal from the tissue of interest. Although this decreases the contrast-to-noise ratio, it can substantially increase the number of sections which can be imaged per given TR in conventional IR imaging or during breathold in the snapshot IR (turboFLASH) technique. Thus, the optimization of RF pulses is useful in obtaining faster IR images, increasing the contrast and/or increasing the number of imaging planes.  相似文献   

8.
在反转恢复测试中磁化矢量的演化特征:辐射阻尼效应   总被引:1,自引:0,他引:1  
在强辐射阻尼存在下,水样(90% H2O in D2O)的反转恢复实验表明:当两脉冲的相位相差180°且反转脉冲角<180°时,或两脉冲相位一致但反转脉冲角>180°时,在检测期观测到的信号强度将不发生从负极大值到正极大值的突变;在同样的条件下,如果存在频率偏置,信号强度存在波动,即beating效应.只有当两脉冲的相位一致而反转脉冲角<180°时,或两脉冲的相位相差180°但反转脉冲角>180°时,在检测期信号强度才发生突变,即jumping效应.这些现象都可通过辐射阻尼理论予以合理地解释.另外,在检测期当磁化矢量运动到-z轴附近(对应于τ=Trdln{tan[(π±δ)/2]}),信号强度与理论预计的偏差实际上与T1弛豫效应有关.  相似文献   

9.
The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction.  相似文献   

10.
A novel radio frequency (RF) field intensity mapping or imaging method using a composite NMR spin-echo sequence is proposed. A composite spin-echo RF pulse with 90 degrees y-180 degrees x-90 degrees y sequence makes phase change in the final image depending on the RF field intensity on the object. The resultant phase change or phase map can be used to obtain the actual RF flip-angle map for a given condition which includes the status of tuning and RF inhomogeneity, etc. Bloch equation has been solved numerically to obtain the effects of the RF field intensity as well as the main magnetic field inhomogeneity and the results are used for the mapping (imaging) of the RF field intensity. Phantom studies have been performed using a 1.5 Tesla whole body MRI system and the results are presented.  相似文献   

11.
Significant artifacts arise in T(1rho)-weighted imaging when nutation angles suffer small deviations from their expected values. These artifacts vary with spin-locking time and amplitude, severely limiting attempts to perform quantitative imaging or measurement of T(1rho) relaxation times. A theoretical model explaining the origin of these artifacts is presented in the context of a T(1rho)-prepared fast spin-echo imaging sequence. Experimentally obtained artifacts are compared to those predicted by theory and related to B(1) inhomogeneity. Finally, a "self-compensating" spin-locking preparatory pulse cluster is presented, in which the second half of the spin-locking pulse is phase-shifted by 180 degrees. Use of this pulse sequence maintains relatively uniform signal intensity despite large variations in flip angle, greatly reducing artifacts in T(1rho)-weighted imaging.  相似文献   

12.
We present novel Carr-Purcell-like sequences using composite pulses that exhibit improved performance in strongly inhomogeneous fields. The sequences are designed to retain the intrinsic error correction of the standard Carr-Purcell-Meiboom-Gill (CPMG) sequence. This is achieved by matching the excitation pulse with the refocusing cycle such that the initial transverse magnetization lies along the axis n(Beta) characterizing the overall rotation of the refocusing cycle. Such sequences are suitable for relaxation measurements. It is shown that in sufficiently inhomogeneous fields, the echo amplitudes have an initial transient modulation that is limited to the first few echoes and then decay with the intrinsic relaxation time of the sample. We show different examples of such sequences that are constructed from simple composite pulses. Sequences of the form 90 degrees (0)-(90 degrees (90-theta/2)-theta(180-theta/2)-90 degrees (90-theta/2))(n) with theta approximately 90 degrees and 270 degrees generate signal over a bandwidth larger than that of the conventional CPMG sequence, resulting in an improved signal-to-noise ratio in inhomogeneous fields. The new sequence 127 degrees (x,y)-(127 degrees (x)-127 degrees (-x))(n) only excites signal off-resonance with a spectrum that is bimodal, peaking at Delta omega(0)=+/-omega(1). Depending on the phase and exact timing of the first pulse, symmetric or antisymmetric excitation is obtained. We also demonstrate several new sequences with improved dependence on the RF field strength. The sequence (22.5 degrees (67.5)-90 degrees (-22.5))-(90 degrees (67.5)-45 degrees (157.5)-90 degrees (67.5))(n) has the property that the phase of the signal depends on B(1), allowing coarse B(1) imaging in a one-dimensional experiment.  相似文献   

13.
The Carr-Purcell pulse sequence, with low refocusing flip angle, produces echoes midway between refocusing pulses that decay to a minimum value dependent on T(2). When the refocusing flip angle was π/2 (CP(90)) and τ>T(2), the signal after the minimum value, increased to reach a steady-state free precession regime (SSFP), composed of a free induction decay signal after each pulse and an echo, before the next pulse. When τ相似文献   

14.
A new method of solvent suppression is described, based on presaturation in combination with volume selection; the name “FLIPSY” is proposed for this sequence. A low-flip-angle pulse is used for excitation, immediately followed by two 180° pulses, each of which is independently phase cycled through Exorcycle. The phase-cycled inversion pulses achieve volume selection in a way similar to the widely used 1D NOESY sequence, thereby largely eliminating any residual “hump” signal from the solvent. The two 180° pulses combine to produce a net 360° rotation forzmagnetization and either a 180° or a 360° rotation for transverse magnetization, depending on the step in the phase cycle. This allows the overall flip angle of the sequence to be controlled by adjusting the length of the initial excitation pulse. It is demonstrated that this property allows one to choose freely a suitable compromise between signal strength and integral accuracy when using FLIPSY, just as when using single-pulse excitation. Such a choice cannot be made when using 1D NOESY, since the effective flip angle in that experiment is always 90°. The application of FLIPSY to recording LC-NMR spectra is demonstrated.  相似文献   

15.
The derivation and investigation of two new J-compensated attached-proton-test experiments, CAPT2 and CAPT3, are presented. These methods incorporate fewer pulses than CAPT and are shown to be more effective over a wider range of 1JCH than spin flip, APT, and CAPT for CH, CH2, and CH3 spin systems. In addition, the magnitude of the flip angle of the initial pulse which creates transverse carbon magnetization is unrestricted in CAPT2 and CAPT3. The compensated CAPT3 sequence, which is patterned after the 90°x90°y90°x composite pulse, is found to be excellent for routine use in 13C spectroscopy.  相似文献   

16.
The optimum pulse flip angles were calculated for multi-scan acquisition of hyperpolarized NMR and MRI. The derived formulae could be correlated with the best angle for ordinary steady-state acquisition, the so-called Ernst angle. Although single-scan acquisition has been popular in hyperpolarized measurements, signal accumulation by increasing scans may become very effective for improving the total signal gain, especially when the sample's longitudinal spin relaxation time is long. The optimum angles were calculated from theoretical relations between the exponential of the pulse repetition time/relaxation time ratio and the total scan counts. Constant and variable flip angle cases are presented, both of which yield similar cumulative signal amplitudes. For the constant angle case, a numerically calculated semi-universal curve is presented for the rough estimation of the best angle, as the results were not significantly dependent upon the degree of hyperpolarization within the realistic range. Meanwhile, for the variable angle case, the best angles were approximated from a clean trigonometric series relation, in which the initial pulse became near the Ernst angle and the last pulse was always 90 degrees . A modification of the variable angle scheme enables the acquisition of uniform signal amplitude throughout all scans.  相似文献   

17.
The purpose of this investigation was to quantitatively evaluate the practical impact of alteration of key imaging parameters on image quality and artifacts in fast multi-planar gradient echo (GRE) pulse sequences. These include multi-planar GRASS (MPGR) and fast multi-planar spoiled GRASS (FMPSPGR). We developed a composite phantom with different T(1) and T(2) values comprising the range of common biological tissues, which was also subjected to periodic motion in order to evaluate motion effects. Magnetic resonance imaging was performed on a GE Signa 1.5-T system. Experimental variations in key parameters included excitation flip angle (FL), echo time (TE), repetition time (TR), and receive bandwidth (BW). Quantitative analysis consisted of signal-to-noise-ratio (SNR) and contrast (CN), image nonuniformity (NU), full-width-at-half-maximum (FWHM) (i.e., blurring or geometric distortion), and ghosting ratio (GR). We found that flip angle, TE, and TR play particularly critical roles in determining image signal, homogeneity, and ghosting artifact with these sequences. Optimum clinical application of these pulse sequences requires careful attention to these imaging parameters and to their complex interactions.  相似文献   

18.
For a desired range of offsets, universal rotations of arbitrary flip angle can be constructed based on point-to-point rotations of I(y) with half the flip angle. This approach allows, for example, creation of broadband or bandselective refocusing pulses from broadband or bandselective excitation pulses. Furthermore, universal rotations about any axis can be obtained from point-to-point transformations that can easily be optimized using optimal control algorithms. The construction procedure is demonstrated on the examples of a broadband refocusing pulse, a broadband 120(x) degrees rotation and a z-rotation with offset pattern.  相似文献   

19.
Magnetic resonance imaging sequences utilizing limited flip angles and gradient echoes yield rapid (less than 2 min) dynamic images of the cardiovascular system. These images contain both accurate anatomical and functional information. Using a gradient refocused acquisition in the steady state (GRASS) in the CINE mode, we studied the relationship between gradient echo signal intensity and velocity of steady and pulsatile flow in a phantom simulating medium to large vessels. Images were acquired on a 1.5 Tesla system (repetition TIME = 21 ms, echo TIME = 12 ms, flip ANGLE = 30 degrees). Data from each pulse interval were sorted in 16 images. Signal intensities from flow tube lumina and surrounding stationary water jacket were used to calculate contrast ratios which were compared to velocity measurements made with electromagnetic (EM) flow probes outside the magnet room. During steady flow, signal intensity contrast ratios increased with increasing flow and in a 10 mm thick slice, reached a peak at 48 cm/s, and declined for velocities up to 90 cm/s. Changes in instantaneous velocity during pulsatile flow correlated well (r > .88) with signal intensity changes up to a maximum mean velocity of 17 cm/s. Total signal intensity from the lumen for an “R to R” interval correlated extremely well (r > .97) with mean pulsatile flow velocities up to 30 cm/s. The excellent correlation between gradient echo signal intensity and actual flow velocities suggests that this imaging sequence might be useful for evaluating normal and pathologic flow phenomena.  相似文献   

20.
This work explores slice profile effects in 2D slice-selective gradient-echo MRI of hyperpolarized nuclei. Two different sequences were investigated: a Spoiled Gradient Echo sequence with variable flip angle (SPGR-VFA) and a balanced Steady-State Free Precession (SSFP) sequence. It is shown that in SPGR-VFA the distribution of flip angles across the slice present in any realistically shaped radiofrequency (RF) pulse leads to large excess signal from the slice edges in later RF views, which results in an undesired non-constant total transverse magnetization, potentially exceeding the initial value by almost 300% for the last RF pulse. A method to reduce this unwanted effect is demonstrated, based on dynamic scaling of the slice selection gradient. SSFP sequences with small to moderate flip angles (<40°) are also shown to preserve the slice profile better than the most commonly used SPGR sequence with constant flip angle (SPGR-CFA). For higher flip angles, the slice profile in SSFP evolves in a manner similar to SPGR-CFA, with depletion of polarization in the center of the slice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号