首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper makes a point about the identification of irradiated foodstuffs by means of electron paramagnetic resonance (EPR) or electron spin resonance (ESR). EPR is the most accurate method for such routine applications since radicals are stabilised for a long time in all (or part of) foods that are in solid and dry states; consequently, EPR can be applied to meat and fish bones, fruit and relative products (from vegetal origin). More details are given for mollusc shells, such as oysters and mussels.  相似文献   

2.
When N2O reacts with irradiated MgO, an ESR signal due to O is found. This species is highly reactive and when molecular oxygen, carbon monoxide and ethylene are adsorbed at 77°K on O, new signals are found due to the formation of O3, CO2 and C2H4O radicals.  相似文献   

3.
Abstract Sunlight has been implicated in the high incidence of skin cancer found in patients receiving 6-mercaptopurine (PSH) in the form of its pro-drug azathioprine. In this study we have used EPR spectroscopy in conjunction with the spin-trapping technique to determine whether PSH and its metabolic or photochemical oxidation products generate highly reactive free radicals upon UV irradiation. When an aqueous anaerobic solution (pH 5 or 9) of PSH (pK2= 7.7) and either 2-methyl-2-nitrosopropane (MNP) or nitromethane (NM) were irradiated (λ > 300 nm) with a Xe arc lamp, the corresponding purin-6-thiyl (PS.) radical adduct and the reduced form of the spin trap (MNPIH’or CH3N02) were observed. However, no radical adducts were detected when PSH and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were irradiated (λ= 320 nrn) in oxygen-free buffer. These findings suggest that PSH does not photoionize but that instead MNP and NM are reduced by direct electron transfer from excited state PSH, 1,3(PSH)*. In aerobic solution, oxygen can act as an electron acceptor and the O2*- and PS radicals are formed and trapped by DMPO. 6-Mercaptopurine did photoionize when irradiated with a Nd:YAG laser at 355 nm as evidenced by the appearance of the DMPO/H (eeq+ H+) adduct, which decreased in intensity in the presence of N2O. 1,3(6-Mercap-topurine)* oxidized ascorbate, formate and reduced glutathione to the corresponding ascorbyl, CO2.- or glutathiyl radicals. The photochemical behavior of 6-thioxanthine and 6-thiouric acid was similar to PSH. However, the excited states of these metabolic oxidation products exhibited stronger reducing properties than 1,3(PSH)*. Photolysis of PSH photoproducts purine-6-sulfonate or purine-6-sulfinate resulted in homolysis of the C-S bond and the appearance of the SO3′- and SO2?-- radicals, respectively, which were detected by direct EPR. These studies demonstrate that UV irradiation of PSH, its photoproducts and metabolites generates a variety of free radicals that may be involved in the etiology of skin cancer induced by azathioprine.  相似文献   

4.
Geometry optimizations were performed on monoanionic and dianionic clusters of sulfate anions with carbon dioxide, SO4−1/−2(CO2) n , for n = 1–4, using the B3PW91 density functional method with the 6-311 + G(3df) basis set. Limited calculations were carried out with the CCSD(T) and MP2 methods. Binding energies, as well as adiabatic and vertical electron detachment energies, were calculated. No covalent bonding is seen for monoanionic clusters, with O3SO–CO2 bond distances between 2.8 and 3.0 ?. Dianionic clusters show covalent bonding of type [O3S–O–CO2]−2, [O3S–O–C(O)O–CO2]−2, and [O2C–O–S(O2)–O–CO2]−2, where one or two oxygens of SO4−2 are shared with CO2. Starting with n = 2, the dianionic clusters become adiabatically more stable than the corresponding monoanionic ones. Comparison with SO4−1/−2(SO2) n and CO3−1/−2(SO2) n clusters, the binding energies are smaller for the present SO4−1/−2(CO2) n systems, while stabilization of the dianion occurs at n = 2 for both SO4−2(CO2) n and SO4−2(SO2) n , but only at n = 3 for CO3−2(SO2) n .  相似文献   

5.
Jing Wang 《Tetrahedron》2010,66(10):1846-3733
2, 2′-Dihydroxyazobenzene (DHAB) demonstrated high sensitivity and low selectivity toward three anions: CN, CO32−, and HCO3. In the presence of Cu(II), complex DHAB-Cu(II) could give rise to enhanced fluorescence intensity by about 45-fold at 590 nm and visible red-to-reddish orange color change upon the addition of cyanide by utilizing an indirect method, while no changes were observed in the presence of other anions, including F, Cl, Br, I, H2PO4, CH3COO, NO3, CO32− and HCO3, and SO42−, making the DHAB-Cu(II) complex a selective and sensitive cyanide chemosensor.  相似文献   

6.
The synthesis and reaction with two oxidation agents is described for N-phenyl-1-(2-oxo-1-azacycloalkyl)methanesulfonamides. Their oxidation was carried out using RO2·R{\rm O}_{2^\bullet} radicals and 3-chloroperbenzoic acid. In both cases, the EPR spectra of corresponding aminoxyl radicals were recorded. Their simulation confirmed that the –SO2– group in the neighbourhood of the – NO·{{\rm NO}^\bullet} – fragment does not prevent the interaction of the unpaired electron with the methylene protons and the nitrogen atom of the heterocyclic ring.  相似文献   

7.
The secondary reactions of the oxidation and thermal transformations of gamma irradiated (at 77 K) and plasticized (with water) cellulose radicals were studied by 3 cm-and 2 mm-band EPR spectroscopy. The radiolysis of cotton cellulose was found to produce the H-C*=O formyl radical, and heating the irradiated samples to 190–200 K resulted in the formation of the ROO* peroxide radical. The EPR spectra of microcrystalline cellulose recorded at room temperature contained an individual triplet (α β H = 2.5–2.7 mT) with an additional quadruplet structure (splitting 0.5–0.7 mT) from three γ-hydrogens. This triplet was interpreted as a signal of the primary radical at C4. The main direction of thermal transformations of primary radicals was synchronous reactions of the dehydration of the polycarbohydrate complex accompanied by the dissociation of the C-H, C-OH, and C-C bonds and elimination of H2O, H2, CO, and CO2 with successive formation of allyl and then polyene radicals, which were a source of the growth of polyconjugated systems in macromolecules.  相似文献   

8.
In this paper, the synthesis and thermal decomposition behavior of hydrotalcite-like Mn-Al layered double hydroxide (LDH) have been investigated. First, the Mn-Al LDH was synthesized by the coprecipitation method using various anions such as Cl, CO2−3, NO3, SO2−4 or dicarboxylic acids (DCA). The single phase of the Mn-Al LDH was obtained when Cl, NO3 or DCA was used as a guest anion. In the case of CO2−3 or SO2−4, the solid products included MnCO3 or shigaite as a by-product. The crystallinity of the Cl/Mn-Al LDH was greatly influenced by a drying temperature and that the crystallinity of the Cl/Mn-Al LDH dried at room temperature was found to rise about 6 times in comparison with that dried at 333 K. The DCA/Mn-Al LDH was found to have an expanding LDH structure, supporting that the LDH basal layers were bridged by the intercalated DCA anion. Then, the thermal decomposition of the DCA/Mn-Al LDH has been examined, and the intercalated DCA was found to be decomposed at lower temperature than DCA itself. The oxidation number of Mn ion rose with increasing the heat treatment temperature and was +2.70 with crystallizing Mn3O4 after being heated at 973 K. The thermal decomposition of guest DCA was thought to be accelerated by the strong catalytic action of Mn ion in the host hydroxide basal layers.  相似文献   

9.
The accumulation of CO 2 - radicals in γ-irradiated porcine, chicken, bovine, walleye pollack, and navaga bone tissues and chicken eggshells was studied by EPR spectroscopy for the purpose of detecting irradiated food and evaluating the dose absorbed during its radiation processing. It was found that, in the dose range 0–10 kGy, the concentration of radicals is a linear function of dose, and the variation coefficient of the radiationchemical yield of radicals is no higher than 30% for bone tissues from various biological species. The applicability of the additive dose method to the EPR dosimetry of irradiated beef was examined. A linear regression model used in the additive dose method was found to give overestimated results, as compared with an exponential fitting model.  相似文献   

10.
Polymer electrolytes composed of a blend of polyvinyl chloride-polyethylene oxide (PVC-PEO) as a host polymer, lithium triflate (LiCF3SO3) as a salt, mixture of ethylene carbonate (EC) and dibuthyl phthalate (DBP) as plasticizers and silica (SiO2) as the nanocomposite filler were studied. Results suggest that PVC-PEO blending exhibits improved mechanical strength compared to that of pure PEO. The introduction of LiCF3SO3 changes the mechanical properties of PVC-PEO blends from hard and brittle to soft and tough. In PVC-PEO:LiCF3SO3 (70:30) system, the Young’s modulus value decreases from 5.30 × 10−1 MPa to 4.78 × 10−4 MPa and the elongation at peak value increases from 3.71 mm to 32.09 mm with the incorporation of DBP and EC. The deteriorated mechanical properties with the addition of plasticizers are overcome with the addition of SiO2 as nanocomposite filler. In PVC-PEO-LiCF3SO3-DBP-EC system, the addition of 5% SiO2 increases the Young’s modulus value from 4.78 × 10−4 MPa to 1.51 × 10−3 MPa. The improvement of the mechanical properties reveals greater dispersion of SiO2 particles in PVC-PEO blend based polymer electrolytes. In practical lithium polymer cells, inorganic fillers are frequently added to improve the mechanical strength of the electrolyte films.  相似文献   

11.
Peroxynitrous acid (ONOOH) was produced by the on-line mixing of acidified hydrogen peroxide with nitrite in a flow system. A strong chemiluminescent (CL) emission was observed when ONOOH reacted with carbonate without any special CL reagents. When cotton was present in the CL cell, the CL emission was enhanced significantly. The method was developed to determine nitrite, which showed a key improvement that any CL reagents and sensitizers were not used, resulting in better selectivity. The applicability of the present CL system was demonstrated for the sensitive and selective determination of nitrite in natural water samples without any special pretreatment. Good agreements were obtained for the determination of nitrite in tap and well waters between the present approach and a standard spectrophotometric method. The average precision was 4.6% (n=7) and detection limit (S/N=3) was 1.0×10−7 M. Based on the CL spectrum, UV spectra, and dissolved oxygen measurement, a possible CL mechanism was proposed. ONOOH was an unstable compound in acidic solution and could be quenched into peroxynitrite (ONOO) in basic solution. ONOO reacted with CO2 to produce ONOOCO2, which can rapidly decompose into NO2 and CO3 radicals. In the presence of H+, CO3 radicals can protonate to bicarbonate radical (HCO3). The recombination of HCO3 radicals and decomposition can lead to light emission.  相似文献   

12.
The mechanisms of the redox reactions between a polymer containing Al(III) sulfonated phthalocyanine pendants, (AlIII(?NHS(O2)trspc)2?)2, and radicals have been investigated in this work. Pulse radiolysis and photochemical methods were used for these studies. Oxidizing radicals, OH?, HCO3?, (CH3)2COHCH2?, and N3?, as well as reducing radicals, eaq?, CO2??, and (CH3)2C?OH, respectively accept or donate one electron forming pendent phthalocyanine radicals, AlIII(?NHS(O2)trspc ?)? or 3?. The kinetics of the redox processes is consistent with a mechanism where the pendants react with radicals formed inside aggregates of five to six polymer strands. Electron donating radicals, that is, CO2?? and (CH3)2C?OH, produce one‐electron reduced phthalocyanine pendants that, even though they were stable under anaerobic conditions, donated charge to a Pt catalyst. While the polymer was regenerated in the Pt catalyzed processes, 2‐propanol and CO2 were respectively reduced to propane and CO. The reaction of SO3?? radicals with the polymer stood in contrast with the reactions of the radicals mentioned above. A first step of the mechanism, the coordination of the SO3?? radical to the Al(III), was subsequently followed by the formation of a SO3?? ‐ phthalocyanine ligand adduct. The decay of the SO3?? ‐ phthalocyanine ligand adduct in a ~102 ms time domain regenerates the polymer, and it was attributed to the dimerization/disproportionation of SO3?? radicals escaping from the aggregates of polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
In the present work di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrids (di-urethanesils) incorporating magnesium triflate (Mg(CF3SO3)2) with 100 ≥ n ≥ 2 (where n, composition, is the molar ratio of oxyethylene repeat units per Mg2+ ion) have been characterized by Fourier transform infrared and Raman spectroscopy to elucidate the Mg2+/POE, Mg2+/urethane, Mg2+/CF3SO3 and hydrogen bonding interactions. The Mg2+ ions bond to POE chains and to the carbonyl oxygen atoms of the urethane linkages over the whole range of salt content studied. A crystalline POE/Mg(CF3SO3)2 complex of unknown stoichiometry is formed at n = 5. “Free” and weakly coordinated CF3SO3 ions are present in all the materials examined. Contact ion pairs emerge at n ≤ 20 and higher ionic aggregates appear at n ≤ 5.  相似文献   

14.
CO2 radicals catalyze the dehalogenation of bromo-alkanes by formate via a hydrogen atom transfer mechanism.  相似文献   

15.
A proton‐coupled electron transfer (PCET) process plays an important role in the initial step of lipoxygenases to produce lipid radicals which can be oxygenated by reaction with O2 to yield the hydroperoxides stereoselectively. The EPR spectroscopic detection of free lipid radicals and the oxygenated radicals (peroxyl radicals) together with the analysis of the EPR spectra has revealed the origin of the stereo‐ and regiochemistry of the reaction between O2 and linoleyl (= (2Z)‐10‐carboxy‐1‐[(1Z)‐hept‐1‐enyl]dec‐2‐enyl) radical in lipoxygenases. The direct determination of the absolute rates of H‐atom‐transfer reactions from a series of unsaturated fatty acids to the cumylperoxyl (= (1‐methyl‐1‐phenylethyl)dioxy) radical by use of time‐resolved EPR at low temperatures together with detailed kinetic investigations on both photoinduced and thermal electron‐transfer oxidation of unsaturated fatty acids provides the solid energetic basis for the postulated PCET process in lipoxygenases. A strong interaction between linoleic acid (= (9Z,12Z)‐octadeca‐9,12‐dienoic acid) and the reactive center of the lipoxygenases (FeIII? OH) is suggested to be involved to make a PCET process to occur efficiently, when an inner‐sphere electron transfer from linoleic acid to the FeIII state is strongly coupled with the proton transfer to the OH group.  相似文献   

16.
Semicarbazide (SEM), the marker residue for the banned nitrofuran veterinary antibiotic nitrofurazone (NFZ), has been detected regularly in foods (47% of recent nitrofuran EU Rapid Alerts involve SEM). However, the validity of SEM as a definitive marker for NFZ has been undermined by SEM arising from other sources including azodicarbonamide, a plastics blowing agent and flour treatment additive. An inexpensive screening test for SEM in food matrices is needed—all SEM testing currently uses expensive LC-MS/MS instrumentation. We now report the first production of antibodies against derivatised SEM. A novel carboxyphenyl SEM derivative was used to raise a polyclonal antibody that has been incorporated into a semi-quantitative microtitre plate ELISA, validated according to the criteria set out in Commission Decision 2002/657/EC, for use with chicken muscle. The antibody is highly specific for derivatised SEM, cross-reactivity being 1.7% with NFZ and negligible with a wide range of other nitrofurans and poultry drugs. Samples are derivatised with o-nitrobenzaldehyde and simultaneously protease digested before extraction by cation exchange SPE. The ELISA has a SEM detection capability (CCβ) of 0.25 μg kg−1 when a threshold of 0.21 μg kg−1 is applied to the selection of samples for confirmation (lowest observed 0.25 μg kg−1 fortified sample, n = 20), thus satisfying the EU nitrofurans’ minimum required performance limit of 1 μg kg−1. NFZ-incurred muscles (12) containing SEM at 0.5-5.0 μg kg−1 by LC-MS/MS, all screened positive by this ELISA protocol which is also applicable to egg and chicken liver.  相似文献   

17.
The reactions of S + OH → SO + H (1) and SO + OH → SO2 + H (2) were studied in a discharge flow reactor coupled to an EPR spectrometer. The rate constants obtained under the pseudo-first-order conditions with an excess of S or SO were found to be k1 = (6.6 ± 1.4) × 10?11 and k2 = (8.4 ± 1.5) × 10?11 at room temperature. Units are cm3/molec·sec. Besides no reactivity was observed between S and CO2 at 298 K and between CIO and SO2 up to 711 K.  相似文献   

18.
The EPR technics has been used to study the effect of solvent composition on the photochemical conversion of Cu(II) dithiocarbamate mixed-ligand complexes Cu(Et2dtc)X (X=Cl, Br) and Cu(Et2dtc)+…Y (Y=ClO4, NO3) in chloroalkane/alcohol solutions, where chloroalkane=CCl4, CHCl3 or CH2Cl2 and alcohol=MeOH, EtOH, i-PrOH or i-BuOH. The obtained results allow to get some insight into the behaviour of the mixed-ligand complexes towards the halogen donation power of chloroalkanes and the co-ordination abilities of alcohols. The paper deals with the nature of the complexes obtained as intermediate products of photolysis.  相似文献   

19.
 To explore the interactions between ubiquinones and oxygen in living organisms, the thermodynamics of a series of electron and hydrogen transfer reactions between semiquinone radicals, as well as their corresponding protonated forms, and oxygen, singlet or triplet, were studied using the hybrid Hartree–Fock–density functional theory method Becke's three parameter hybrid method with the Lee, Yang, and Parr correlation functional. Effects of the solvent and of the isoprenyl tail on the electron and hydrogen transfer reactions were also investigated. It is found that semiquinone radicals (semiquinone anion radicals or protonated semiquinone radicals) cannot react with triplet oxygen to form the superoxide anion radical O2 . In contrast, neutral quinones can scavenge O2 efficiently. In the gas phase, only protonated semiquinone radicals can react spontaneously with singlet oxygen to produce peroxyl radical (HO2). However, both semiquinone anion radicals and protonated semiquinone radicals can react with singlet oxygen to produce harmful oxygen radicals (O2 a l l b u l l and HO2, respectively) in aqueous and protein environments. The free-energy changes of the corresponding reactions obtained for different ubiquinone systems are very similar. It clearly shows that the isoprenyl tail does not influence the electron and hydrogen transfer reactions between semiquinone radicals and oxygen significantly. Results of electron affinities, vertical ionization potentials, and proton affinities also show that the isoprenyl tail has no substantial effect on the electronic properties of ubiquinones. Received: 3 July 2000 / Accepted: 6 September 2000 / Published online: 21 December 2000  相似文献   

20.
Based on the continuum dielectric model, this work has established the relationship between the solvent reorganization energy of electron transfer (ET) and the equilibrium solvation free energy. The dipole-reaction field interaction model has been proposed to describe the electrostatic solute-solvent interaction. The self-consistent reaction field (SCRF) approach has been applied to the calculation of the solvent reorganization energy in self-exchange reactions. A series of redox couples, O2/O 2, NO/NO+, O3/O 3, N3/N 3, NO2/NO+ 2, CO2/CO 2, SO2/SO 2, and ClO2/ClO 2, as well as (CH2)2C-(-CH2-) n -C(CH2)2 (n=1 ∼ 3) model systems have been investigated using ab initio calculation. For these ET systems, solvent reorganization energies have been estimated. Comparisons between our single-sphere approximation and the Marcus two-sphere model have also been made. For the inner reorganization energies of inorganic redox couples, errors are found not larger than 15% when comparing our SCRF results with those obtained from the experimental estimation. While for the (CH2)2C–(–CH2–) n –C(CH2)2 (n=1 ∼ 3) systems, the results reveal that the solvent reorganization energy strongly depends on the bridge length due to the variation of the dipole moment of the ionic solute, and that solvent reorganization energies for different systems lead to slightly different two-sphere radii. Received: 19 April 2000 / Accepted: 6 July 2000 / Published online: 27 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号