首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The synthesis of enantiopure (+)‐benzotricamphor syn‐ 5 , an important chiral C3‐symmetric rigid building block for supramolecular applications, was studied in detail to reduce the number of steps and to increase the diastereoselectivity and overall yield. The new synthetic procedure allowed larger amounts of syn‐ 5 to be obtained and used for the preparation of new derivatives, such as the corresponding tris‐trifluoromethanesulfonate syn‐ 12 , which was efficiently transformed into (+)‐benzotribornenetrinitrile syn‐ 1 and (+)‐benzotribornenetris(ethynyl‐4‐pyridine) syn‐ 2 . The previously reported (+)‐benzotricamphortrioxime syn‐ 6 was transformed into tris‐nitrile syn‐ 3 by Beckman reaction. Compounds syn‐ 1 – 3 were employed as multidentate ligands for silver(I) and platinum(II) centres in apolar solvents. The linear coordination geometry of AgI and square‐planar geometry of cis‐chelated PtII in combination with the chiral tripodal ligands syn‐ 1 – 3 led to the formation of chiral enantiopure capsules with M3L2 stoichiometry, as confirmed by 2D NMR NOESY and DOSY experiments as well as ESI mass spectrometry.  相似文献   

2.
A series of novel chiral C2-symmetric multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and easily available monoprotected(1R,2R)-diaminocyclohexane.The catalytic properties of these ligands were investigated in Ir-catalyzed asymmetric transfer hydrogenation of various aromatic ketones,giving the corresponding optical active alcohols with up to 98%conversion and good ee under mild reaction conditions.  相似文献   

3.
The [AuxAg16-x(SAdm)8(Dppe)2] nanocluster with aggregation-induced emission (AIE) was synthesized from a non-fluorescent [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster via a ligand-exchange engineering (Dppe=1,2-Bis(diphenylphosphino)ethane, Dppm=Bis(diphenylphosphino)methane, HSAdm=1-Adamantanethiol). The nanocluster has a Au-doped icosahedral AuxAg13-x core, capped by two Ag(SR)3, one Ag(SR)2 and two Dppe ligands. By changing the achiral Dppe ligand into a chiral dbpb ligand ((2S,3S)-(-)-Bis(diphenylphosphino)butane or (2R,3R)-(+)-2,3-Bis(diphenylphosphino)butane), chiral nanoclusters are obtained. ESI-MS and UV-vis spectroscopy were performed to track the reaction. This work provides guidance for the construction of new clusters by etching clusters with multidentate phosphine ligands.  相似文献   

4.
A range of novel bi-, tri- and multidentate organotellurium ligands containing Te and N donor atoms and their derivatives have been synthesised. The synthetic strategy involves telluration of orthochelating, monoanionic substrates derived from the following arylamines: N,N-dimethylbenzylamine, (S)-(-)-N,Ndimethyl-1-phenethylamine, N,N-dimethylnaphthylamine, (N,N-di-methylaminomethy l) ferrocene, tricarbony1(N, N-dimethylbenzenemethanamine) chromium and 2-(3-thienyl)-pyridine. In addition novel chiral hybrid Schiff base ligands have been prepared by the condensation reaction of bis(o-formylphenyl) telluride ando-butyltellurobenzaldehyde with (R)-(+)-l-phenethylamine and (1R, 2S)-(-)-norephedrine.  相似文献   

5.
In spite of the excellent ligation properties of isocyanides, until a few years ago there was only a small number of known multidentate ligands of this type. One of the reasons for this lack of interest, when compared to monodentate isocyanides, was the linear arrangement of the M? C?N? R group, which usually inhibits the formation of mononuclear chelate complexes and leads to the formation of multinuclear or polymeric metal complexes. In these, the multidentate ligand acts in a monodentate fashion towards each metal atom. Only recently has a series of polyisocyanides with large ligand backbones been synthesized successfully. Bidentate isocyanides can bridge two metal atoms or react to give chelates with only one metal center. Tripodal ligands form mono- or binuclear complexes, in which the largest organometallic rings observed to date occur (up to 36 atoms). This class of ligands promises to be interesting for the synthesis of stable, diagnostically important technetium complexes of the type [Tc(CNR) 6 ]+. There also appear to be applications for tripodal isocyanides in catalysis. A facial, chiral Cr(CNR*)3 unit might be able to catalyze the hydrogenation or isomerization of prochiral double bonds. It is even possible to bind triisocyanides with suitable backbones to carbonyl trimetal clusters, thereby stabilizing them, or making selective cluster formation possible. Coordinated isocyanides can be transformed readily into carbene ligands, which, in the future, could lead to complexes with polycarbene ligation.  相似文献   

6.
The chirality of a gold nanocluster can be generated from either an intrinsically chiral inorganic core or an achiral inorganic core in a chiral environment. The first structural determination of a gold nanocluster containing an intrinsic chiral inorganic core is reported. The chiral gold nanocluster [Au20(PP3)4]Cl4 (PP3=tris(2‐(diphenylphosphino)ethyl)phosphine) has been prepared by the reduction of a gold(I)–tetraphosphine precursor in dichloromethane solution. Single‐crystal structural determination reveals that the cluster molecular structure has C3 symmetry. It consists of a Au20 core consolidated by four peripheral tetraphosphines. The Au20 core can be viewed as the combination of an icosahedral Au13 and a helical Y‐shaped Au7 motif. The identity of this Au20 cluster is confirmed by ESI‐MS. The chelation of multidentate phosphines enhances the stability of this Au20 cluster.  相似文献   

7.
In this perspective, two different classes of multidentate ligands (aminotriphenolate and dipyridinimine) and the corresponding metal (Ti, V, Mo, W, Fe) complexes are described. These catalysts can activate efficiently the environmental benign H2O2 oxidant, promoting a wide variety of oxidative processes (sulfoxidations, N-oxidations, epoxidations, haloperoxidation, alcohol oxidation, hydroxylation).  相似文献   

8.
Tridentate ligands 2-hydroxyphenylsalicylaldimine (SAPH2), 2-hydroxyphenyl-2-hydroxy-1-naphtalaldimine (NAPH2) and Ni(II) complexes with multidentate ligand Bis-N·N′-(salicylidene)-1,3-propanediamine (LH2) as well as mononuclear complex of Cu(II) were prepared using the same multidentate ligand. Diethylamine (Et2NH), NH3 and H2O monodentate ligands were bound to these complexes coordinatively. The heat absorbed at the temperatures where these ligands thermally dissociated from the complexes were measured using the TG and DSC methods. It is assumed that the states both of the complexes with and without the monodentate ligands are solid and coordination bond energy for the monodentate ligand is calculated. It is seen that these calculated coordination bond energies are comparable with hydrogen bond energies.  相似文献   

9.
The title compound, [Cd(NCS)2(C13H10N4OS)2]n, contains SCN anions acting as end‐to‐end bridging ligands which utilize both S and N atoms to link cadmium(II) centers into one‐dimensional double chains. The multidentate 5‐(4‐pyridyl)‐2‐(2‐pyridylmethylsulfanyl)‐1,3,4‐oxadiazole ligands behave as monodentate terminal ligands, binding metal centers only through the N atoms of the 4‐pyridyl groups. Two types of eight‐membered rings are formed by two SCN anions bridging CdII centers, viz. planar and chair conformation, which are alternately disposed along the same chain. Finally, chains define a two‐dimensional array through two different interchain π–π stacking interactions.  相似文献   

10.
Chiral zero-dimensional hybrid metal halides (0D HMHs) could combine excellent optical properties and chirality, making them promising for circularly polarized luminescence (CPL). However, chiral 0D HMHs with efficient CPL have been rarely reported. Here, we propose an efficient strategy to achieve simultaneously high photoluminescence quantum yield (PLQY) and large dissymmetry factor (glum), by integrating achiral and chiral ligands into 0D HMHs. Specifically, three pairs of chiral 0D hybrid indium-antimony chlorides are synthesized by combing achiral guanidine with three types of chiral methylbenzylammonium-based derivatives as the organic cations. These chiral 0D HMHs exhibit near-unity PLQY and large glum values up to around ±1×10−2. The achiral guanidine ligand is not only essential to crystallize these hybrid indium-antimony chlorides to achieve near-unity PLQYs, but also greatly enhances the chirality induction from organic ligands to inorganic units in these 0D HMHs. Furthermore, the choice of different chiral ligands can modify the strength of hydrogen bonding interactions in these 0D HMHs, to maximize their glum values. Overall, this study provides a robust way to realize efficient CPL in chiral HMHs, expanding their applications in chiroptical fields.  相似文献   

11.
Abstract

Using a “chiral pool” approach, a number of chiral thiolate and sulfide ligands based on natural terpenes and terpenoids have been synthesized in a few simple steps. Two new Rh-thiolate complexes with the formula [Rh(CO)2(μ-SR)]2 were obtained. The influence of these complexes and catalytic systems formed by combining the synthesized ligands with [Rh(CO)2(μ-Cl)]2 and [Rh(cod)(μ-Cl)]2, on the reaction rate, chemoselectivity, stereoselectivity and formation of tetraphenyldisiloxane in Rh-catalyzed asymmetric hydrosilylation of acetophenone as a model reaction have been studied. Mechanistic aspects of formation of silyl enol ether as a side product in the presence of S-containing ligands are presented.  相似文献   

12.
The solid-state structure of the highly insoluble silver complex 1-phenyl-1H-tetrazole-5-thiol (AgPMT), without solubilizing ligands, has been successfully resolved. The crystal structure of {[(AgPMT)4?·?0.5THF]} n consists of polymeric repeating units of asymmetrically constructed AgPMT dimers. The asymmetric dimers are based on S–Ag–N and N–Ag–N links, and reveal the routes of connectivity possible with this multidentate ligand. This is one of the few linear, one-dimensional silver-based polymers.  相似文献   

13.
A P-stereogenic linear tetraphosphine tetraoxide, (R,R)- or (S,S)-dpmppm(=O)4, was synthesized to prepare C2 dinuclear M(hfa)3 complexes (M=Eu, Tb, Y) as the first example of lanthanide(III) complexes with P-chiral multidentate phosphine oxides. The mononuclear M(hfa)3 complexes (M=Eu, Y) with a P-chiral diphosphine dioxide, tpdpb(=O)2, were also prepared, and comparison of their photophysical properties for the EuIII complexes revealed that significant chiral induction from the P-chiral centers arises on the achiral M(hfa)3 units through intramolecular π-π stacking constraint in the dinuclear system.  相似文献   

14.
The design and synthesis of three new C 2‐symmetric chiral diphosphoramidite ligands starting from simple and cheap building blocks have been developed. Rhodium(I) cationic complexes bearing these chelate ligands have been prepared and applied in asymmetric hydrogenation of model olefins. A rhodium complex with a diphosphoramidite containing a chiral diamine configurationally stable and two fluxional chiral biphenyl units gave higher enantioselectivity with increasing hydrogen pressure (87% ee) in the hydrogenation of dimethyl itaconate.  相似文献   

15.
Several novel chiral sulfonamide ligands based on (1R,2S,4R,5S)‐1,4‐diamino‐2,5‐dimethylcyclohexane skeleton have been synthesized and their application in the enantioselective addition of diethylzinc to aldehydes was investigated in the presence of Ti(OiPr)4. The effect of ligands, temperature and the loading amount of ligands was studied. Under optimized conditions, enantioselective addition of diethylzinc with various aryl aldehydes and aliphatic aldehydes proceeded smoothly and afforded chiral secondary alcohols in up to 88% ee.  相似文献   

16.
单体2-溴吡啶, 2-溴-5-甲基吡啶, 2-氯-4-氟吡啶, 2-氯-3-三氟甲基吡啶分别与( R )-3,3′-二硼酸-2,2′-二甲氧基-1,1′-联萘 [( R )-2]在钯催化下, 通过Suzuki交叉耦合反应合成得到四个类似手性化合物( R )-3a-d。将它们应用到炔基锌对醛的不对称催化加成反应中,结果表明( R )-3a和( R )-3b的催化效果不好, 而( R )-3d只对脂肪醛有很好的催化效果,( R )-3c则对这类不对称催化反应均有很好的催化效果, 能给出高达95%的收率和99%的选择性结果。结果还表明所产生相应炔丙醇异构体构型为S,这与手性催化剂构型相反。  相似文献   

17.
The concepts of double coset representations and sphericities of double cosets are proposed to characterize stereoisomerism, where double cosets are classified into three types, i.e., homospheric double cosets, enantiospheric double cosets, or hemispheric double cosets. They determine modes of substitutions (i.e., chirality fittingness), where homospheric double cosets permit achiral ligands only; enantiospheric ones permit achiral ligands or enantiomeric pairs; and hemispheric ones permit achiral and chiral ligands. The sphericities of double cosets are linked to the sphericities of cycles which are ascribed to right coset representations. Thus, each cycle is assigned to the corresponding sphericity index (a d , c d , or b d ) so as to construct a cycle indices with chirality fittingness (CI-CFs). The resulting CI-CFs are proved to be identical with CI-CFs introduced in Fujita’s proligand method (S. Fujita, Theor. Chem. Acc. 113 (2005) 73–79 and 80–86). The versatility of the CI-CFs in combinatorial enumeration of stereoisomers is demonstrated by using methane derivatives as examples, where the numbers of achiral plus chiral stereoisomers, those of achiral stereoisomers, and those of chiral stereoisomers are calculated separately by means of respective generating functions.  相似文献   

18.
A new addition to the rational design of sterically and electrically easily tunable chiral bis(imidazoline) ligands from chiral amino alcohols has been developed. Vast structural variation of chiral bis(imidazoline) ligands can be simply achieved by the choice of both the 1,2‐amino alcohol and its N‐1 R1 substituent. A small library of chiral bisimidazolines ( 1 a – h ) has been constructed. The method has provided an easy and simplified route to a diverse set of air‐stable and water‐tolerant chiral bis(imidazoline) ligands on 10 g scales. The dual Lewis Acid/Brønsted base catalytic system generated from the (S)‐ 1 a /Cu(OTf)2 complex and Et3N was able to catalyze Henry reactions between aldehydes and nitromethane effectively at room temperature, and also to tolerate a wide scope of aldehydes with excellent enantiomeric excesses. Not only aromatic aldehydes but also aliphatic aldehydes afforded the nitroalcohol products, with enantiomeric excesses in the 93–98 % range. This dual catalytic system is among the most effective systems so far reported for the asymmetric parent Henry reactions. This work also represents the first members of the class of chiral bisimidazolines to have been demonstrated to achieve excellent enantioselectivities.  相似文献   

19.
In the chiral polymeric title compound, poly[aqua(4,4′‐bipyridine)[μ3S‐carboxylatomethyl‐N‐(p‐tosyl)‐l ‐cysteinato]manganese(II)], [Mn(C12H13NO6S2)(C10H8N2)(H2O)]n, the MnII ion is coordinated in a distorted octahedral geometry by one water molecule, three carboxylate O atoms from three S‐carboxyatomethyl‐N‐(p‐tosyl)‐l ‐cysteinate (Ts‐cmc) ligands and two N atoms from two 4,4′‐bipyridine molecules. Each Ts‐cmc ligand behaves as a chiral μ3‐linker connecting three MnII ions. The two‐dimensional frameworks thus formed are further connected by 4,4′‐bipyridine ligands into a three‐dimensional homochiral metal–organic framework. This is a rare case of a homochiral metal–organic framework with a flexible chiral ligand as linker, and this result demonstrates the important role of noncovalent interactions in stabilizing such assemblies.  相似文献   

20.
Two salts of acyclic Schiff base cationic ligands, namely N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride monohydrate, C17H22N4O42+·2Cl·H2O, (I), and 2‐hydroxy‐N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride, C17H22N4O52+·2Cl, (II), were synthesized as precursors in order to obtain new acyclic and macrocyclic multidentate ligands and complexes. The cation conformations in compounds (I) and (II) are different in the solid state, although the cations are closely related chemically. Similarly, the hydrogen‐bonding networks involving ammonium cations, hydroxyl groups and chloride anions are also different. In the cation of compound (II), the hydroxyl group is disordered over two sets of sites, with occupancies of 0.785 (8) and 0.215 (8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号