首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to explore the potential benefits from the combined use of ultrasound irradiation and catalytic wet peroxide oxidation for the degradation of 4-hydroxybenzoic acid (4-HBA). The target compound degradation was studied under direct and indirect sonication, while silent conditions were employed as reference. The catalyst, a mixed (Al-Fe) pillared clay named FAZA, was in the form of powder and of extrudates. In the case of extrudates it was observed that ultrasound improves the catalyst performance due to reduction of diffusion resistance, thereby increasing the conversion after 4 h by 12-15 times. Increasing the initial concentration of 4-HBA was found to lead to lower conversion. The combined ultrasonic/catalytic process appears very promising for environmental applications.  相似文献   

2.
A simple and green process to prepare copper iodide in nano scale via sonication was carried out. Subsequently, this nanoparticles was used as an efficient catalyst for the synthesis of 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolones via four-component reaction of hydrazine, ethyl acetoacetate, aldehyde and β-naphthol in water under ultrasound irradiation. The combinatorial synthesis was attained for this procedure with applying ultrasound irradiation while making use of water as green ambient. Simple work-up, excellent yield of products and short reaction times are some of the important features of this protocol. Notably, this catalyst could be recycled and reused for five times without noticeably decreasing the catalytic activity.  相似文献   

3.
Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70 °C) after 9 min of ultrasound irradiation.  相似文献   

4.
Poly(4-vinylpyridinium) hydrogen sulfate solid acid was found to be efficient catalyst for preparation of 1,1-diacetate using ultrasound irradiation at ambient temperature and neat condition. Deprotection of the resulting 1,1-diacetates were achieved using the same catalyst in methanol solvent under ultrasound irradiation at room temperature. This new method consistently has the advantage of excellent yields and short reaction times. Utilization of solvent free, simple reaction conditions, isolation, and purification makes this manipulation very interesting from an economic and environmental perspective. Further, the catalyst can be reused and recovered for several times.  相似文献   

5.
Ultrasonic effects in a suspension system were examined using the photocatalytic oxidation of 2-propanol to acetone and of ethanol to acetaldehyde in the aqueous suspension of TiO2 powder as a model reaction. The formation rate of acetone was significantly increased under ultrasonic irradiation. The oxidation reaction under ultrasonic irradiation was affected in a different manner from that in silence by reaction conditions such as ultrasonic power, stirring speed, amount of TiO2, concentration of 2-propanol, and pretreatment of the TiO2 powder. Furthermore, it was also observed that the particle size of the TiO2 photocatalyst powder was increased due to the particle agglomeration by ultrasonic irradiation, and consequently it was suggested that ultrasound activates the surface of the catalyst. These results are discussed on the basis of not only the activation of the photocatalyst but also ultrasonic enhancement of mass transport of 2-propanol molecules.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(3):1150-1154
In this research, a general synthetic method for the synthesis of tetrahydropyridines were developed using ZrP2O7 nanoparticles under ultrasonic irradiations. Firstly by a simple and green process, nano zirconium pyrophosphate was prepared via sonication. Subsequently, this nanoparticle was used as an efficient catalyst for the synthesis of highly functionalized tetrahydropyridines via five-component reaction of aromatic aldehyde, amine and ethyl acetoacetate in ethanol under ultrasound irradiation. The present approach offers several advantages such as high yields, environmentally benign, simple work-up, excellent yield of products, short reaction times as well as recoverability and reusability of the catalyst.  相似文献   

7.
Rapid, efficient and selective alkene epoxidation and alkane hydroxylation with sodium periodate catalyzed by Mn (TPyP) supported on chloromethylated polystyrene, [Mn(TPyP)-CMP], under ultrasonic irradiation were reported. This catalytic system showed high selectivity in epoxidation of stilbenes and R-(+)-limonene and exhibits a particular ability to epoxidize linear alkenes such as 1-heptene. This supported catalyst can catalyze the oxidation of very inert saturated hydrocarbons as well as alkylbenzene derivatives with NaIO4 under ultrasonic irradiation. Under mild reaction conditions, this catalyst was consecutive reused five times without detectable catalyst leaching and gave over 95% epoxide yield in the epoxidation of styrene.  相似文献   

8.
The transition crystal TiO(2) catalyst with high sonocatalytic activity was obtained utilizing the microwave irradiation in hydrogen peroxide solution. At the same time a series of affecting factors (microwave irradiation time, heat-treated time and heat-treated temperature) to prepare the TiO(2) catalyst on the sonocatalytic degradation of parathion were considered in this paper. The ultrasound of low power was used as an irradiation source to induce treated TiO(2) particles to perform catalytic activity. The results show that the sonocatalytic activity of the transition crystal TiO(2) powder is obviously higher than those of pure ordinary rutile and anatase TiO(2) powders. At last, the parathion in aqueous solution was degraded completely and became some simple inorganic ions such as NO(3)(-), PO(4)(3-), SO(4)(2-), etc. The degradation ratio of parathion in the presence of the transition crystal TiO(2) catalyst attains nearly 80% within 60 min ultrasonic irradiation, while corresponding ones are only 65.23% and 53.88%, respectively, for pure ordinary rutile and anatase TiO(2) powders.  相似文献   

9.
An alternative and environmentally benign pathway for diastereoslective synthesis of fluorinated spiro[indole-3,2'-oxirane]-3'-benzoyl-2(1H)-ones (2a-g) is reported. The spiro[indole-3,2'-oxiranes] derivatives were obtained in 90-97% yield exclusively via the epoxidation of 3-aroylmethylene indole-2-ones with 30% aqueous hydrogen peroxide using cetyltrimethyl ammonium bromide as a phase transfer catalyst under ultrasound irradiation. The lead compounds have been tested for their antimicrobial activity and antioxidant properties.  相似文献   

10.
New and efficient multi-component methods have been developed for the synthesis of spirooxindoles in the presence of a catalytic amount of p-TSA as an inexpensive and available catalyst in EtOH under ultrasound irradiation. The method is simple, starts from readily accessible commercial starting materials, and provides biologically interesting products in good yields and short reaction times.  相似文献   

11.
Potassium sorbate has been utilized as a novel, efficient and green catalyst for the Knoevenagel condensation of aromatic aldehydes with active methylene compounds to afford substituted ole-fins through the conventional stirring or under ultrasound irradiation. Improvements were observed by carrying out the reactions under ultrasound irradiation. The advantages of this procedure are mild reaction conditions, high yields, cleaner reaction profiles and operational simplicity.  相似文献   

12.
This work reports the enzymatic production of mono- and diacylglycerols under the influence of ultrasound irradiation, in a solvent-free system, with and without the presence of surfactants at a constant temperature of 65°C, glycerol to oil molar ratio of 2:1 and a commercial immobilized lipase (Novozym 435) as catalyst. For this purpose, two operation modes were adopted: the use of a sonotrode (ultrasonic probe), without agitation, varying reaction time, irradiation amplitude (25-45% of the total power) and type of surfactant, and a mechanically stirred reactor (600 rpm) under ultrasound irradiation in a water bath, testing different surfactants. Results show that very satisfactory MAG and DAG yields, above 50 wt.%, can be obtained without the use of surfactant, at mild irradiation power supply (~130 W), with no important enzyme activity losses verified, in a relatively short reaction time (2h), and low enzyme content (7.5 wt.%). Also, reaction kinetic results show that contents of MAG+DAG as high as ~65 wt.% can be achieved at longer times (6h), indicating a promising route for producing MAG and DAG using ultrasound irradiation.  相似文献   

13.
Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This “green” method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy.  相似文献   

14.
Vanadium polyoxometalate (PVMo) supported on mesoporous MCM-41, MCM-41-NH(2), as efficient and heterogeneous catalysts, with large surface area, for hydrocarbon oxidation with hydrogen peroxide is reported. Oxidation of the alkenes and alkanes gave product selectivities, which are similar to those observed for corresponding homogeneous catalyst. PVMo-MCM was prepared by introduction of PVMo into the mesoporous molecule sieves of MCM-41 by impregnation and adsorption techniques. The samples were characterized by X-ray diffraction (XRD), thermal gravimetric-differential thermal analysis (TG-DTA), FT-IR, scanning electron microscopy (SEM), UV-Vis and cyclic voltametry (CV). Ultrasonic irradiation has a particular effect on MCM-41 structural uniformity and reduced the reaction times and improved the product yields. In addition, the solid catalysts could be recovered and reused several times without loss of its activity.  相似文献   

15.
The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield.  相似文献   

16.
In this work, esterification of oleic acid by various alcohols is achieved with high yields under ultrasonic irradiation. This reaction performed with a novel heterogeneous catalyst that fabricated by heteropoly acid and Fe(III)-based MOF, namely MIL-53 (Fe). Syntheses of MIL-53 and encapsulation process carry out by ultrasound irradiation at ambient temperature and atmospheric pressure. The prepared composite was characterized by various techniques such as XRD, FT-IR, SEM, BET and ICP that demonstrate excellent catalytic activities, while being highly convenient to synthesize. The obtained results revealed that ultrasound irradiation could be used for the appropriate and rapid biodiesel production.  相似文献   

17.
Summary The oxidation of some arenes with the alkyl side groups by means of hydrogen peroxide is been presented. As the activator of hydrogen peroxide tungstoboric acid was chosen. The catalyst was examined under both homogeneous and heterogeneous conditions. The reactions under conventional conditions were compared with the microwave assisted reactions.  相似文献   

18.
The molybdenum (VI) catalysed rearrangement of methylbutynol was carried out under the influence of ultrasound (20 kHz). Surprisingly, 2-methylpropene (isobutene) was found as the main product. The formation of isobutene can be explained by rearrangement to prenal, oxidation to 3,3-dimethylacrylic acid and then decarboxylation. 3,3-Dimethylacrylic acid was decarboxylated in the presence of ultrasound and a catalyst; without a catalyst or without ultrasound (at 50 degrees C) it remained unchanged.  相似文献   

19.
The 1,3-dipolar cycloaddition reaction between 7-(3-azidopropoxy)-5-hydroxyflavone and phenylacetylene was carried out to investigate the synthesis of 7-(3-(4-phenyl-1,2,3-triazol-1-yl)propoxy)- 5-hydroxyflavone in presence of ultrasound (sono-synthesis) and absence of ultrasound (conventional method) under relatively optimized solvent and catalyst conditions. The reaction rate was notably accelerated with the help of ultrasound irradiation. An experiment was especially carried out for investigating the acceleration mechanism of ultrasound on the cycloaddition. A novel series of chrysin derivatives linked with 1,2,3-triazoles were obtained by the copper(I)-catalyzed 1,3-dipolar Huisgen cycloaddition reaction using t-BuOH/H(2)O (1:1 v/v) as reaction solvents and CuSO(4)·5H(2)O/sodium ascorbate as the catalyst at room temperature in the presence of ultrasound irradiation. Their structures are elucidated by NMR, ESI MS, IR and Elemental analysis.  相似文献   

20.
Natural Natrolite nanozeolite has been investigated as an efficient and reusable catalyst for the N-sulfonylation of amines under ultrasound irradiation at room temperature. Compared with traditional methods, the significant advantages for method are green solvent, milder and cleaner conditions, higher purity and yields, shorter reaction time, easier work-up procedure and the lower generation of waste or pollutions. The catalyst can be recovered and reused several times without significant loss of its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号