首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is devoted to the mathematical analysis of a general recursive linearization algorithm for solving inverse medium problems with multi-frequency measurements. Under some reasonable assumptions, it is shown that the algorithm is convergent with error estimates. The work is motivated by our effort to analyze recent significant numerical results for solving inverse medium problems. Based on the uncertainty principle, the recursive linearization allows the nonlinear inverse problems to be reduced to a set of linear problems and be solved recursively in a proper order according to the measurements. As an application, the convergence of the recursive linearization algorithm [Chen, Inverse Problems 13(1997), pp.253-282] is established for solving the acoustic inverse scattering problem.  相似文献   

2.
We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC^1) convex programming problem with fewer variables than the original one. In this paper a smoothing Newton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic convergence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.  相似文献   

3.
In this paper, we investigate the use of ultra weak variational formulation to solve a wave scattering problem in near field optics. In order to capture the sub-scale features of waves, we utilize evanescent wave functions together with plane wave functions to approximate the local properties of the field. We analyze the global convergence and give an error estimation of the method. Numerical examples are also presented to demonstrate the effectiveness of the strategy.  相似文献   

4.
We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well approximated by equations from this class. For regular (C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of O(α). A case study along with supporting numerical results is included.  相似文献   

5.
The aim of this paper is to solve numerically the inverse problem of reconstructing small amplitude perturbations in the magnetic permeability of a dielectric material from partial or total dynamic boundary measurements. Our numerical algorithm is based on the resolution of the time-dependent Maxwell equations, an exact controllability method and Fourier inversion for localizing the perturbations. Two-dimensional numerical experiments illustrate the performance of the reconstruction method for different configurations even in the case of limited-view data.  相似文献   

6.
In this paper we consider nonlinear delay diffusion-reaction equations with initial and Dirichlet boundary conditions. The behaviour and the stability of the solution of such initial boundary value problems (IBVPs) are studied using the energy method. Simple numerical methods are considered for the computation of numerical approximations to the solution of the nonlinear IBVPs. Using the discrete energy method we study the stability and convergence of the numerical approximations. Numerical experiments are carried out to illustrate our theoretical results.  相似文献   

7.
In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. Corresponding convergence results are proved.  相似文献   

8.
The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.  相似文献   

9.
In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results.  相似文献   

10.
In this paper, we propose a tailored-finite-point method for the numerical simulation of the Helmholtz equation with high wave numbers in heterogeneous medium. Our finite point method has been tailored to some particular properties of the problem, which allows us to obtain approximate solutions with the same behaviors as that of the exact solution very naturally. Especially, when the coefficients are piecewise constant, we can get the exact solution with only one point in each subdomain. Our finite-point method has uniformly convergent rate with respect to wave number k in L^2-norm.  相似文献   

11.
For large and sparse saddle point problems, Zhu studied a class of generalized local Hermitian and skew-Hermitian splitting iteration methods for non-Hermitian saddle point problem [M.-Z. Zhu, Appl. Math. Comput. 218 (2012) 8816-8824 ]. In this paper, we further investigate the generalized local Hermitian and skew-Hermitian splitting (GLHSS) iteration methods for solving non-Hermitian generalized saddle point problems. With different choices of the parameter matrices, we derive conditions for guaranteeing the con- vergence of these iterative methods. Numerical experiments are presented to illustrate the effectiveness of our GLHSS iteration methods as well as the preconditioners.  相似文献   

12.
In this paper, a discontinuous finite element method for the positive and symmetric, first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed by using linear triangle elements, and the O(h^2)-order optimal error estimates are derived under the assumption of strongly regular triangulation and the Ha-regularity for the exact solutions. The convergence analysis is based on some superclose estimates of the interpolation approximation. Finally, we discuss the Maxwell equations in a two-dimensional domain, and numerical experiments are given to validate the theoretical results.  相似文献   

13.
The generalized successive overrelaxation (GSOR) method was presented and studied by Bai, Parlett and Wang [Numer. Math. 102(2005), pp.1-38] for solving the augmented system of linear equations, and the optimal iteration parameters and the corresponding optimal convergence factor were exactly obtained. In this paper, we further estimate the contraction and the semi-contraction factors of the GSOR method. The motivation of the study is that the convergence speed of an iteration method is actually decided by the contraction factor but not by the spectral radius in finite-step iteration computations. For the nonsingular augmented linear system, under some restrictions we obtain the contraction domain of the parameters involved, which guarantees that the contraction factor of the GSOR method is less than one. For the singular but consistent augmented linear system, we also obtain the semi-contraction domain of the parameters in a similar fashion. Finally, we use two numerical examples to verify the theoretical results and the effectiveness of the GSOR method.  相似文献   

14.
In this paper we continue the study of discontinuous Galerkin finite element methods for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) meth- ods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for diffusion with interface corrections [18]. We introduce a numerical flux for the test func- tion, and obtain a new direct discontinuous Galerkin method with symmetric structure. Second order derivative jump terms are included in the numerical flux formula and explicit guidelines for choosing the numerical flux are given. The constructed scheme has a sym- metric property and an optimal L2 (L2) error estimate is obtained. Numerical examples are carried out to demonstrate the optimal (k + 1)th order of accuracy for the method with pk polynomial approximations for both linear and nonlinear problems, under one-dimensional and two-dimensional settings.  相似文献   

15.
The inverse black body radiation problem, which is to reconstruct the area temperature distribution from the measurement of power spectrum distribution, is a well-known ill-posed problem. In this paper, a variational expectation-maximization (EM) method is developed and its convergence is studied. Numerical experiments demonstrate that the variational EM method is more efficient and accurate than the traditional methods, including the Tikhonov regularization method, the Landweber method and the conjugate gradient method.  相似文献   

16.
The artificial boundary method is applied to solve three-dimensional exterior problems. Two kind of rotating ellipsoids are chosen as the artificial boundaries and the exact artificial boundary conditions are derived explicitly in terms of an infinite series. Then the well-posedness of the coupled variational problem is obtained. It is found that error estimates derived depend on the mesh size, truncation term and the location of the artificial boundary. Three numerical examples are presented to demonstrate the effectiveness and accuracy of the proposed method.  相似文献   

17.
Over the last couple of years molecular imaging has been rapidly developed to study physiological and pathological processes in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging stands out for its unique advantages, especially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerging optical imaging mode with promising biomedical advantages. In this survey paper, we explain the biomedical significance of BLT, summarize theoretical results on the analysis and numerical solution of a diffusion based BLT model, and comment on a few extensions for the study of BLT.  相似文献   

18.
The paper is concerned with the inverse problem for reconstructing a 3D penetrable ob- ject in a shallow water waveguide from the far-field data of the scattered fields with many acoustic point source incidences. An indicator sampling method is analyzed and presented for fast imaging the size, shape and location of such a penetrable object. The method has the advantages that a priori knowledge is avoided for the geometrical and material proper- ties of the penetrable obstacle and the much complicated iterative techniques are avoided during the inversion. Numerical examples are given of successful shape reconstructions for several 3D penetrable obstacles having a variety of shapes. In particular, numerical results show that the proposed method is able to produce a good reconstruction of the size, shape and location of the penetrable target even for the case where the incident and observation points are restricted to some limited apertures.  相似文献   

19.
In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h? We closed this old problem with a positive answer. Our theory is also verified by numerical tests.  相似文献   

20.
This paper is concerned with a priori error estimates of a finite element method for numerical reconstruction of some unknown distributed flux in an inverse heat conduction problem. More precisely, some unknown distributed Neumann data are to be recovered on the interior inaccessible boundary using Dirichlet measurement data on the outer ac- cessible boundary. The main contribution in this work is to establish the some a priori error estimates in terms of the mesh size in the domain and on the accessible/inaccessible boundaries, respectively, for both the temperature u and the adjoint state p under the lowest regularity assumption. It is revealed that the lower bounds of the convergence rates depend on the geometry of the domain. These a priori error estimates are of immense interest by themselves and pave the way for proving the convergence analysis of adaptive techniques applied to a general classes of inverse heat conduction problems. Numerical experiments are presented to verify our theoretical prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号