首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sterically hindered aryl phosphonic acid ArP(O)(OH)2 (2) (Ar = 2,4,6-isopropylphenyl) was synthesized and structurally characterized. ArP(O)(OH)2 forms an interesting hydrogen-bonded corrugated sheet-type supramolecular structure in the solid-state. A three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole(DMPZH), and Cu(CH3COO)2.H2O produces the tetranuclear Cu(II) compound [Cu4(mu3-OH)2{ArPO2(OH)}2(CH3CO2)2(DMPZH)4][CH3COO]2.CH2Cl2 (3). A similar three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole, and Zn(CH3COO)2.2H2O yields the tetranuclear Zn(II) compound [Zn4{ArPO3}2{ArPO2(OH)}2{DMPZH}4(DMPZ)2].5MeOH (4). While 3 has been found to have an asymmetric cage structure where two dinuclear copper cores are bridged by bidentate [ArPO2(OH)]- ligands, 4 possesses an open-book tricyclic structure composed of three fused metallophosphonate rings. Magnetic studies on 3 revealed antiferromagnetic behavior.  相似文献   

2.
New homo trinuclear Zn(II) complexes [Zn(3)L(1)(micro-OAc)](ClO(4))(2).3CHCl(3).H(2)O, 1, and [Zn(3)L(1)(micro-OAc)].ClO(4).PF(6).5CH(3)OH.H(2)O, 2, and hetero trinuclear complex [Zn(2)CuL(1)(micro-OAc)](ClO(4))(2).3CHCl(3).H(2)O,3, of optically active hexaaza triphenolic macrocycle H(3)L(1) were synthesized and crystallographically characterized. The cation [Zn(3)L(1)(micro-OAc)](+) structure of 1 and 2 closely resembles the trinuclear Zn(II) active site of P1 nuclease. The distorted tetrahedral geometry of Zn3 was successfully reproduced at Cu1 in complex 3. The complexes 2 and 3 cleave CT DNA at 37 and 50 degrees C.  相似文献   

3.
Zhou JH  Cheng RM  Song Y  Li YZ  Yu Z  Chen XT  Xue ZL  You XZ 《Inorganic chemistry》2005,44(22):8011-8022
Novel polynuclear Cu(II) complexes containing derivatives of 1,2,4-trizaole and pivalate ligands, [Cu(3)(mu(3)-OH)(mu-adetrz)(2)(piv)(5)(H(2)O)].6.5H(2)O (1) (adetrz = 4-amino-3,5-diethyl-1,2,4-triazole, piv = pivalate), [Cu(4)(mu(3)-OH)(2)(mu-atrz)(2)(mu-piv)(4)(piv)(2)].2MeOH.H(2)O (2) (atrz = 4-amino-1,2,4-triazole), [Cu(4)(mu(3)-OH)(2)(mu-tbtrz)(2)(mu-piv)(2)(piv)(4)].4H(2)O (3) (tbtrz = 4-tert-butyl-1,2,4-trizaole), and [Cu(4)(mu(3)-O)(2)(mu-admtrz)(4)(admtrz)(2)(mu-piv)(2)(piv)(2)].2[Cu(2)(mu-H(2)O)(mu-admtrz)(piv)(4)].13H(2)O [4 = 4a.2(4b).13H(2)O; admtrz = 4-amino-3,5-dimethyl-1,2,4-triazole], have been prepared and structurally characterized. 1 is an asymmetrical triangular complex containing a [Cu(3)(mu(3)-OH)] core with two Cu---Cu edges spanned by bridging adetrz ligands. 2, 3, and 4a are novel tetranuclear compounds containing a [Cu(4)(mu(3)-O)(2)] or [Cu(4)(mu(3)-OH)(2)] core with Cu---Cu edges spanned by bridging 1,2,4-triazole or pivalate ligands. 4b is a dinuclear compound with one admtrz and one water bridge, and it is the first dinuclear Cu(II) triazole complex with one bridging water molecule. 1 is one of few reported triangular Cu(II) complexes with derivatives of 1,2,4-triazole, while 2, 3, and 4a are the first group of the nonlinear tetranuclear Cu(II) compounds with derivatives of 1,2,4-triazole. Variable-temperature magnetic susceptibility studies on the powder samples of 1-3 reveal the overall antiferromagnetic coupling between Cu(II) ions with J values of -55.6 to -12.8 cm(-1) (1), -216.4 to 0 cm(-1) (2), and -259.8 to 4.8 cm(-1) (3).  相似文献   

4.
The free solvated ligand, H(2)bna.CH(3)OH.H(2)O (1), and its dimeric complex, [Cd(2)(bna)(2)(H(2)O)(6)] (2) (bna = 2,2'-dihydroxy-[1,1']-binaphthalene-3,3'-dicarboxylate), were obtained by evaporation of the solutions, while two new d(10) metal-hydroxy cluster-based coordination polymers, namely [Cd(8)(OH)(4)(H(2)O)(10)(bna)(6)].17H(2)O (3) and [Hpy](2)[Zn(4)(OH)(2)(H(2)O)(2)(bna)(4)].2H(2)O.2CH(3)CN (4), were obtained by a hydrothermal route. All the compounds have been characterized by X-ray crystallography and photoluminescence measurements. Compound 1 consists of a three-dimensional, hydrogen-bonded supramolecular array, 2 exhibits a dimeric molecule featuring a square motif organized by two Cd(II) atoms and two bna ligands each at the corner, and 3 contains unprecedented [Cd(8)(micro(3)-OH)(2)(micro-OH)(2)(micro-H(2)O)(2)](12+) octanuclear metallacrown cores which are interlinked through bna to afford a two-dimensional structure, while 4 features layers with butterfly-shaped [Zn(4)(micro(3)-OH)(2)](6+) clusters. All the complexes display photoluminescent properties in the blue/green range. The manifestation of photoluminescence, as probed by molecular orbital calculations performed on the complexes and also on hypothetical multinuclear complexes, is attributed to a ligand-to-metal charge-transfer mechanism. In addition to presenting a new approach for the study of the photoluminescent properties of metal-cluster-based coordination polymers by using simple model compounds, the study also reveals the dominant role of the structure of the ligand over that of the d(10) metal-hydroxy (or oxy) cluster and the presence of the cluster significantly increasing the emission lifetime.  相似文献   

5.
Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.  相似文献   

6.
Three novel extended vanadogermanates, {[(en)(2)Cd(2)Ge(8)V(12)O(40)(OH)(8)(H(2)O)][Cd(en)(2)](2)}·6H(2)O (1), {[Zn(2)(dap)(3)][Zn(dap)](2)Ge(6)V(15)O(48)(H(2)O)}[Zn(dap)(2)(H(2)O)](2)·3H(2)O (2), and {[Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)]Ge(4)V(16)O(42)(OH)(4)(H(2)O)}·2H(2)O (3; en=ethylenediamine, dap=1,2-diaminopropane, dien=diethylenetriamine), have been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, powder XRD, thermogravimetric analysis, and single-crystal XRD. Their Ge-V-O cluster anions are derived from the V(18)O(42) cluster shell by replacing VO(5) square pyramids with Ge(2)O(7) groups. Compound 1 exhibits a 1D sinusoidal chain built up from rare inorganic-organic hybrid dicadmium-substituted vanadogermanate {[Cd(en)](2)V(12)O(40)(GeOH)(8)(H(2)O)} clusters and [Cd(en)(2)] complexes. Compound 2 is the first example of a 2D network based on linkage of the unusual {Ge(6)V(15)O(48)(H(2)O)} clusters and two types of Zn complex fragments. Compound 3 is an unprecedented 3D framework built by {Ge(4)V(16)O(42)(OH)(4)(H(2)O)} clusters and rare trinuclear bridging complex cations [Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)](8+). Magnetic measurements illustrate that both 1 and 2 have antiferromagnetic exchange interactions between metal centers, whereas 3 exhibits ferrimagnetic behavior, which is rare in polyoxovanadate complexes.  相似文献   

7.
Four new azo ligands, L1 and HL2-4, of sulfa drugs have been prepared and characterized. [MX(2)(L1)(H(2)O)(m)].nH(2)O; [(MX(2))(2)(HL2 or HL3)(H(2)O)(m)].nH(2)O and [M(2)X(3)(L4)(H(2)O)].nH(2)O; M=Co(II), Ni(II) and Cu(II) (X=Cl) and Zn(II) (X=AcO); m=0-4 and n=0-3, complexes were prepared. Elemental and thermal analyses (TGA and DTA), IR, solid reflectance spectra, magnetic moment and molar conductance measurements have accomplished characterization of the complexes. The IR data reveal that HL1 and HL2-3 ligands behave as a bidentate neutral ligands while HL4 ligand behaves as a bidentate monoionic ligand. They coordinated to the metal ions via the carbonyl O, enolic sulfonamide S(O)OH, pyrazole or thiazole N and azo N groups. The molar conductance data reveal that the chelates are non-electrolytes. From the solid reflectance spectra and magnetic moment data, the complexes were found to have octahedral, tetrahedral and square planar geometrical structures. The thermal behaviour of these chelates shows that the water molecules (hydrated and coordinated) and the anions are removed in a successive two steps followed immediately by decomposition of the ligand in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves applying Coats-Redfern method.  相似文献   

8.
The interaction of Zn(II) with the non-steroidal anti-inflammatory drug tolfenamic acid leads to the formation of the structurally characterized trinuclear [Zn(3)(tolfenamato)(6)(CH(3)OH)(2)] complex. In the presence of the N,N'-donor heterocyclic ligands 1,10-phenanthroline and 2,2'-bipyridine at a range of ratios, the mononuclear Zn complexes of the general formulae [Zn(tolfenamato)(N,N'-donor)Cl] and [Zn(tolfenamato)(2)(N,N'-donor)] have been isolated and structurally characterized by X-ray crystallography. The deprotonated tolfenamato ligands are coordinated to the Zn(II) ion through carboxylato oxygen atoms. Tolfenamic acid and its complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values.  相似文献   

9.
A convenient method for the preparation of barbiturate transition metal complexes: (i) Cr(3+), Mn(2+), Fe(3+), Zn(2+) and Cd(2+) ions with barbituric acid (H(2)L) and (ii) Cr(3+) and Mo(5+) with 2-thiobarbituric acid (H(2)L') was reported and this has enabled seven complexes to be formulated as: [Cr(HL)(2)(OH)(H(2)O)].H(2)O, [Mn(HL)(2)(H(2)O)(2)], [Fe(2)(L)(OH)(3)(H(2)O)(4)].2H(2)O, [Zn(HL)(2)], [Cd(HL)(2)], [Cr(HL')(OH)(2)(H(2)O)].H(2)O and [Mo(HL')(2)]Cl. These new barbiturate complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, (1)H NMR, mass, X-ray powder diffraction and UV/vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that, all complexes of barbituric and 2-thiobarbituric acids are non-electrolytes except for [Mo(HL')(2)]Cl. The electronic spectra and magnetic susceptibility measurements were used to infer the structures. The IR spectra of the ligands and their complexes are used to identify the mode of coordination. Kinetic and thermodynamic parameters such as: E, DeltaH, DeltaS and DeltaG are estimated according to the DTG curves. The two ligands and their complexes have been studied for their possible biological antifungal activity.  相似文献   

10.
The hydrothermal reaction of thiosalicylic acid, (C(6)H(4)(CO(2)H)(SH)-1,2) with manganese(III) acetate leads to formation of the coordination solid [Mn(5)((C(6)H(4)(CO(2))(S)-1,2)(2))(4)(mu3-OH)2] (1) via a redox reaction, where resulting manganese(II) centres are coordinated by oxygen donor atoms and S-S disulfide bridge formation is simultaneously observed. Reaction of the same ligand under similar conditions with zinc(II) chloride yields the layered coordination solid [Zn(C(6)H(4)(CO(2))(S)-1,2)] (2). Hydrothermal treatment of manganese(III) acetate with 2-mercaptonicotinic acid, (NC(5)H(3)(SH)(CO(2)H)-2,3) was found to produce the 1-dimensional chain structure [Mn(2)((NC(5)H(3)(S)(CO(2))-2,3)(2))(2)(OH(2))(4)].4H(2)O (3) which also exhibits disulfide bridge formation and oxygen-only metal interactions. Compound 3 has been studied by thermogravimetric analysis and indicates sequential loss of lattice and coordinated water, prior to more comprehensive ligand fragmentation at elevated temperatures. The magnetic behaviour of 1 and 3 has been investigated and both exhibit antiferromagnetic interactions. The magnetic behaviour of 1 has been modelled as two corner-sharing isosceles triangles whilst 3 has been modelled as a 1-dimensional chain.  相似文献   

11.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

12.
Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.  相似文献   

13.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

14.
Heteronuclear cationic complexes, [LCuLn]3+ and [(LCu)2Ln]3+, were employed as nodes in designing high-nuclearity complexes and coordination polymers with a rich variety of network topologies (L is the dianion of the Schiff base resulting from the 2:1 condensation of 3-methoxysalycilaldehyde with 1,3-propanediamine). Two families of linkers have been chosen: the first consists of exo-dentate ligands bearing nitrogen-donor atoms (bipyridine (bipy), dicyanamido (dca)), whereas the second consists of exo-dentate ligands with oxygen-donor atoms (anions derived from the acetylenedicarboxylic (H2acdca), fumaric (H2fum), trimesic (H3trim), and oxalic (H2ox) acids). The ligands belonging to the first family prefer copper(II) ions, whereas the ligands from the second family interact preferentially with oxophilic rare-earth cations. The following complexes have been obtained and crystallographically characterized: [LCu(II)(OH2)Gd(III)(NO3)3] (1), [{LCu(II)Gd(III)(NO3)3}2(mu-4,4'-bipy)] (2), 1infinity[LCu(II)Gd(III)(acdca)(1.5)(H2O)2].13H2O (3), 2infinity[LCu(II)Gd(III)(fum)(1.5)(H2O)2].4H2O.C2H5OH (4), 1infinity[LCu(II)Sm(III)(H2O)(Hfum)(fum)] (5), 1infinity[LCu(II)Er(III)(H2O)2(fum)]NO3.3H2O (6), 2infinity[LCu(II)Sm(III)(fum)(1.5)(H2O)2].4H2O.C2H5OH (7), [{(LCu(II))2Sm(III)}2fum2](OH)2 (8), 1infinity[LCu(II)Gd(III)(trim)(H2O)2].H2O (9), 2infinity[{(LCu(II))2Pr(III)}(C2O4)(0.5)(dca)]dca.2H2O (10), [LCu(II)Gd(III)(ox)(H2O)3][Cr(III)(2,2'-bipy)(ox)2].9H2O (11), and [LCuGd(H2O)4{Cr(CN)6}].3H2O (12). Compound 1 is representative of the whole family of binuclear Cu(II)-Ln(III) complexes which have been used as precursors in constructing heteropolymetallic complexes. The rich variety of the resulting structures is due to several factors: 1) the nature of the donor atoms of the linkers, 2) the preference of the copper(II) ion for nitrogen atoms, 3) the oxophilicity of the lanthanides, 4) the degree of deprotonation of the polycarboxylic acids, 5) the various connectivity modes exhibited by the carboxylato groups, and 6) the stoichiometry of the final products, that is, the Cu(II)/Ln(III)/linker molar ratio. A unique cluster formed by 24 water molecules was found in crystal 11. In compounds 2, 3, 4, 9, and 11 the Cu(II)-Gd(III) exchange interaction was found to be ferromagnetic, with J values in the range of 3.53-8.96 cm(-1). Compound 12 represents a new example of a polynuclear complex containing three different paramagnetic ions. The intranode Cu(II)-Gd(III) ferromagnetic interaction is overwhelmed by the antiferromagnetic interactions occurring between the cyanobridged Gd(III) and Cr(III) ions.  相似文献   

15.
The employment of pyridine-2-carbaldehyde oxime (paoH) in zinc(II) benzoate chemistry, in the absence or presence of azide ions, is described. The syntheses, crystal structures and spectroscopic characterization are reported for the complexes [Zn(O(2)CPh)(2)(paoH)(2)] (1), [Zn(12)(OH)(4)(O(2)CPh)(16)(pao)(4)] (2) and [Zn(4)(OH)(2)(pao)(4)(N(3))(2)] (3). The Zn(II) centre in octahedral 1 is coordinated by two monodentate PhCO(2)(-) groups and two N,N'-chelating paoH ligands. The metallic skeleton of 2 describes a tetrahedron encapsulated in a distorted cube. The {Zn(12)(μ-OH)(4)(μ(3)-ΟR)(4)}(16+) core of the cluster can be conveniently described as consisting of a central {Zn(4)(μ(3)-ΟR)(4)}(4+) cubane subunit (RO(-) = pao(-)) linked to four {Zn(2)(μ-OH)}(3+) subunits via the OH(-) group of each of the latter, which becomes μ(3). The molecule of 3 has an inverse 12-metallacrown-4 topology. Two triply bridging hydroxido groups are accommodated into the metallacrown ring. Each pao(-) ligand adopts the η(1)?:?η(1)?:?η(1)?:?μ coordination mode, chelating one Zn(II) atom and bridging a Zn(II)(2) pair. Complexes 1 and 2 display photoluminescence with maxima at ~355 nm and ~375 nm, upon maximum excitation at 314 nm; the origin of the photoluminescence is discussed.  相似文献   

16.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

17.
Three polynuclear complexes, [NiNa(μ(1,1,1)-N(3))(μ-hmb)(2)(DMF)](2), (1), [Ni(4)(μ(3)-OMe)(4)(heb)(4)(MeOH)(1.05)(H(2)O)(2.95)], (2) and [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)]·(ClO(4))(3) (3) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde), were prepared by reaction of the appropriate ligand with nickel(II) perchloride hexahydrate under solvothermal conditions. All compounds were characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Compound 1 exhibits a centrosymmetric heterotetranuclear cluster which represents the first nickel complex to possess two connected face-sharing cubes structure {Ni(2)Na(2)N(2)O(4)}. Compound 2 has a tetranuclear Ni cluster with a cubane topology in which the Ni(II) and the oxygen atoms from the methanol ligands occupying alternate vertices of the cube. Compound 3 consisits of a mixed-valence [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)](3+) subunits and it represents the first nickel {Ni(II)(6)Ni(III)} complex to possess a planar hexagonal disc-like structure. The results show that the minor ligand modifications or solvent change have a key role in the structural control of the self-assembly process. Magnetic properties of 1-3 in the 300-2 K have been discussed. The {Ni(2)Na(2)} (1) and {Ni(4)} (2) core display dominant ferromagnetic interactions from the nature of the binding modes through μ(3)-N(3)(-) or μ(3)-OCH(3)(-), while {Ni(II)(6)Ni(III)} core (3) displays dominant anti-ferromagnetic interactions from the nature of the binding modes through μ(3)-OH(-).  相似文献   

18.
The tripodal ligand N[CH2CH2NHC(O)NHC(CH3)3]3 ([H61]) was used to synthesize a series of monomeric complexes with terminal hydroxo ligands. The complexes [Co(II/III)H31(OH)](2-/1-), [Fe(II/III)H31(OH)](2-/1-), and [Zn(II)H31(OH)](2-) have been isolated and characterized. The source of the hydroxo ligand in these complexes is water, which was confirmed with an isotopic labeling study for [Co(III)H31(OH)](1-). The synthesis of [M(II)H31(OH)](2-) complexes was accomplished by two routes. Method A used 3 equiv of base prior to metalation and water binding, affording yields of < or = 40% for [Co(II)H31(OH)](2-). When 4 equiv of base was used (method B), yields ranged from 50% to 70% for all of the M(II)H31(OH)](2-) complexes. This improvement is attributed to the presence of an intramolecular basic site within the cavity, which scavenges protons produced during formation of the M(II)-OH complexes. The molecular structures of [Zn(II)H31(OH)](2-), [Fe(II)H31(OH)](2-), [Co(II)H31(OH)](2-), and [Co(III)H31(OH)](1-) were examined by X-ray diffraction methods. The complexes have trigonal bipyramidal coordination geometry with the hydroxo oxygen trans to the apical nitrogen. The three M(II)-OH complexes crystallized with nearly identical lattice parameters, and each contains two independent anions in the asymmetric unit. The complexes have intramolecular H-bonds from the urea cavity of [H31](3-) to the coordinated hydroxo oxygen. All the complexes have long M-O(H) bond lengths (>2.00 A) compared to those of the few previously characterized synthetic examples. The longer bond distances in [M(II)H31(OH)](2-) reflect the intramolecular H-bonds in the complexes. The five-coordinate [Zn(II)H31(OH)](2-) has an average Zn-O(H) distance of 2.024(2) A, which is similar to that found for the zinc site in carbonic anhydrase II (2.05(2) A). The enzyme active site also has an extensive network of intramolecular H-bonds to the hydroxo oxygen. [Co(II)H31(OH)](2-) and [Fe(II)H31(OH)](2-) have one-electron redox processes at -0.74 and -1.40 V vs SCE. Both complexes can be chemically oxidized to yield their corresponding M(III)-OH complexes. [Co(III)H31(OH)](1-), with an S = 1 ground state, is a rare example of a paramagnetic Co(III) complex.  相似文献   

19.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

20.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) complexes with piroxicam (Pir) drug (H2L1) and dl-alanine (Ala) (HL2) and also the binary UO2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO2(II) binary complex was isolated in 1:2 ratio with the formula [UO2(H2L)2](NO3)2. The ternary complexes were isolated in 1:1:1 (M:H2L1:L2) ratios. The solid complexes were isolated in the general formulae [M(H2L)(L2)(Cl)n(H2O)m].yH2O (M=Fe(III) (n=2, m=0, y=1), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=0)); [M(H2L)(L2)](X)z.yH2O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO2(II) (X=NO3, z=1, y=2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号