首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Supported carbon molecular sieve membranes based on a phenolic resin   总被引:7,自引:0,他引:7  
The preparation of a composite carbon membrane for separation of gas mixtures is described. The membrane is formed by a thin microporous carbon layer (thickness, 2 μm) obtained by pyrolysis of a phenolic resin film supported over a macroporous carbon substrate (pore size, 1 μm; porosity, 30%). The microporous carbon layer exhibits molecular sieving properties and it allows the separation of gases depending on their molecular size. The micropore size was estimated to be around 4.2 Å. Single and mixed gas permeation experiments were performed at different temperatures between 25°C and 150°C, and pressures between 1 and 3.5 bar. The carbon membrane shows high selectivities for the separation of permanent gases like O2/N2 system (selectivity≈10 at 25°C). Gas mixtures like CO2/N2 and CO2/CH4 are successfully separated by means of prepared membranes. For example, the membrane prepared by carbonization at 700°C shows at 25°C the following separation factors: CO2/N2≈45 and CO2/CH4≈160.  相似文献   

2.
Permeability (P) of Cl2, O2, N2 and H2 was measured in polydimethylsiloxane (PDMS) composite membranes with two different degrees of cross-linking. The permeability was measured in the low pressure range (1–3 bar absolute) over a fairly large temperature range 35–120°C. The functionalities of the membranes were compared on the basis of permeation rate and ability to separate the gases Cl2–O2. These results are part of an extensive survey where perfluorinated and carbon membranes are also included (not reported here). The purpose of the project is to develop an industrial membrane with high permselectivity for either O2 or Cl2 (depending on the type of membrane) at temperatures preferably above 70°C. Process conditions are set in an industrial project. The PDMS membranes are good candidates for this separation, having a high permeation rate for Cl2 and a selectivity of Cl2/O2 in the range of 8–25 depending on temperature. Durability of the PDMS membranes in this aggressive environment is found to be very dependent on process conditions and on how the material is polymerized and cured. For documentation of durability, various silicones were tested; these results are to be reported separately.  相似文献   

3.
New types of supported Pd membranes were developed for high temperature H2 separation. Sequential combinations of boehmite sol slip casting and film coating, and electroless plating (ELP) steps were designed to synthesize “Pd encapsulated” and “Pd nanopore” membranes supported on -Al2O3 hollow fibers. The permeation characteristics (flux, permselectivity) of a series of unaged and aged encapsulated and nanopore membranes with different Pd loadings were compared to those of a conventional 1 μm Pd/4 μm γ-Al2O3/-Al2O3 hollow fiber membrane. The unaged encapsulated membrane exhibited good performance with ideal H2/N2 separation factors of 3000–8000 and H2 flux 0.4 mol/m2 s at 370 °C and a transmembrane pressure gradient of 4 × 105 Pa. The unaged Pd nanopore membranes had a lower initial flux and permselectivity, but exhibited superior performance with extended use (200 h). At the same conditions the unaged 2.6 μm Pd nanopore membrane had a H2 flux of 0.16 mol/m2 s and separation factor of 500 and the unaged 0.6 μm Pd nanopore membrane had a H2 flux of 0.25 mol/m2 s and separation factor of 50. Both nanopore membranes stabilized after 40 h of operation, in contrast to a continued deterioration of the permselectivity for the other membranes. An analysis of the permeation data reveals a combination of Knudsen and convective transport through membrane defects. A phenomenological, qualitative model of the synthesis and resulting structure of the encapsulated and nanopore membranes is presented to explain the permeation results.  相似文献   

4.
Ab initio quantum-mechanical methods at the HF/6–31G*, MP2/6–31G* and MP2/6–31G* levels are used to study the relative stabilities of the isomers of SiB2H4. Isomers obtained using the analogy between trivalent boron and divalent silicon are calculated to be more stable compared to isomers where carbon is replaced by the isovalent silicon. 2π aromaticity and the preference of silicon for lower valency control the relative stabilities of SiB2H4 isomers.  相似文献   

5.
A thin, gas-tight palladium (Pd) membrane was prepared by the counter-diffusion chemical vapor deposition (CVD) process employing palladium chloride (PdCl2) vapor and H2 as Pd precursors. A disk-shaped, two-layer porous ceramic membrane consisting of a fine-pore γ-Al2O3 top layer and a coarse-pore -Al2O3 substrate was used as Pd membrane support. A 0.5–1 μm thick metallic membrane was deposited in the γ-Al2O3 top layer very close to its surface, as verified by XRD and SEM with a backscattered electron detector. The most important parameters that affected the CVD process were reaction temperature, reactants concentrations and top layer quality. Deposition of Pd in the γ-Al2O3 top layer resulted in a 100- to 1000-fold reduction in He permeance of the porous substrate. The H2 permeation flux of these membranes was in the range 0.5–1.0 × 10−6 mol m−2 s−1 Pa−1 at 350–450°C. The H2 permeation data suggest that surface reaction steps are rate-limiting for H2 transport through such thin membranes in the temperature range studied.  相似文献   

6.
This work deals with water-swollen hydrogel membranes for potential CO2 separation applications, with an emphasis on elucidating the role of water in the membrane for gas permeation. A series of hydrogel membranes with a wide range of water contents (0.9–10 g water/g polymer) were prepared from poly(vinyl alcohol), chitosan, carboxyl methyl cellulose, alginic acid and poly(vinylamine), and the permeation of CO2, H2, He and N2 through the membranes at different pressures (200–800 kPa) was studied. The gas permeabilities through the dry dense membranes were measured as well to evaluate the resistance of the polymer matrix in the hydrogel membranes. It was shown that the gas permeability in water-swollen membrane is lower than the gas permeability in water, and the selectivity of the water-swollen membranes to a pair of gases is close to the ratios of their permeabilities in water. The permeability of the water-swollen membranes increases with an increase in the swelling degree of the membrane, and the membrane permeability tends to level off when the water content is sufficiently high. A resistance model was proposed to describe gas permeation through the hydrogel membranes, where the immobilized water retained in the polymer matrix was considered to form transport passageways for gas permeation through the membrane. It was shown that the permeability of hydrogel membranes was primarily determined by the water content in the membrane. The model predictions were consistent with the experimental data for various hydrogel membranes with a wide range of water contents (0.4–10 g water/g polymer).  相似文献   

7.
Microporous carbon membranes were prepared on an -alumina support by a pyrolysis of cationic tertiary amine/anionic polymer composites. The precursor solutions contain a thermosetting resorcinol/formaldehyde (RF) polymer and a cationic tertiary amine. Three types of cationic tertiary amines with different chain lengths were used, such as tetramethlammonium bromide (TMAB), tetrapropylammonium bromide (TPAB) and cetyltrimethylammonium bromide (CTAB). A porous structure was produced by a decomposition of the amine and the resulting pores assisted the further gasification of the RF polymer at high temperature. The carbon/alumina membranes have thin and continuous carbon top layers with a thickness of 1 μm. Gas permeation tests were performed using single gases of CO2, O2, N2, CF4, n-C4H10 and i-C4H10, as well as binary mixtures of CH4/n-C4H10 and N2/CF4 at different temperatures between 23 and 150 °C. The carbon membrane prepared using TMAB showed separation factors higher than 650 for the CH4/n-C4H10 mixtures and higher than 8100 for the N2/CF4 mixture. From the permeation of pure gases with different molecular sizes, the pore sizes of the carbon membrane prepared using TMAB, TPAB and CTAB are estimated to be 4.0, 5.0 and larger than 5.5 Å, respectively, indicating that the micropore size of the carbon membranes is controllable by using different amines.  相似文献   

8.
The aim of the study was to test commercial and experimental NF membranes for their separation efficiency and acid resistance in a long-term filtration experiment. Several NF membranes (NF 270, Desal-5 DK, Desal KH, BPT-NF-1 and BPT-NF-2) were tested for their separation efficiency and stability when a solution containing 25 g/L CuSO4 and 8 wt.% H2SO4 was continuously filtered at 40 °C for 2 months. Filtration experiments were carried out with a new five-cell flat-sheet laboratory apparatus. Commercial NF membranes showed good selectivity, retaining most of the copper sulphate and letting most of the sulphuric acid pass into the permeate. However, only the membranes designed to be acid resistant (Desal KH and BPT-NF-2) maintained their separation efficiency during the 2 months of separation. The Desal KH membrane gave better copper retention values (92–95%) than the BPT-NF-2 (60–88%), but the overall selectivity was best with the BPT-NF-2 membrane due to its good sulphuric acid permeation.  相似文献   

9.
Top layers of γ-Al2O3 composite membranes have been modified by the silane coupling technique using phenyltriethoxysilane for improving the separation factor of CO2 to N2. The separation efficiency of the modified membranes was strongly dependent upon the hydroxylation tendency of the support materials and the amount of the special functional group (i.e. phenyl radical) which was coupled onto a top layer. The separation factor through the TiO2 supported γ-Al2O3 membrane was found to be fairly enhanced by silane coupling, but in case of the -Al2O3 supported membrane was not. The CO2/N2 separation factor through the modified γ-Al2O3/TiO2 composite membrane is 1.7 at 90°C and ΔP = 2 × 105 Pa for the binary mixture containing 50 vol% CO2. The separation factor is proportional to the CO2 concentration in the gas mixture, and the modified membrane is stable up to 100°C. The main mechanism of the CO2 transport through the modified γ-Al2O3 layer is known to be a surface diffusion.  相似文献   

10.
Dense ceramic mixed ionic and electronic conducting membranes have been deposited by atmospheric spray-pyrolysis technique onto porous ceramic substrates. Perovskite oxide layers, i.e. manganites La1−xSrxMnO3, ferrites La1−xSrxFe1−y(Co,Ni)yO3, gallates La1−xSrxGa1−y(Co,Ni,Fe)yO3, cobaltites La1−xSrxCoO3 and related perovskites such as lanthanum nickelate La2NiO4 layers have been prepared. The structure, morphology and composition of the layers were characterised by XRD, SEM and WDS, respectively. Density and gas tightness of the layers were studied as a function of deposition process parameters, film thickness (from 0.5 to 3 μm) and preparation procedure. The presence of cracks and defects due to thermo-mechanical stresses applied during or after the preparation process were correlated with the membrane composition and the corresponding thermal expansion coefficient differences between substrates and membranes.  相似文献   

11.
A series of copolymers containing ether oxygen groups and amino groups were prepared based on N,N-dimethylaminoethyl methacrylate (DMEMA) and polyethylene glycol methyl ether methyl acrylate (PEGMEMA). The effect of PEGMEMA content in the copolymer on density, free volume, mechanical performance, and H2, CO2, N2 and CH4 gas transport properties of the copolymer was determined. Free volume was characterized using the polymer density and group contribution theory. The permeability of the copolymer to CO2 is high, and both the CO2/N2 and CO2/H2 selectivities are high. For example, the permeability coefficient of PDMAEMA–PEGMEMA-90 (“90” represents the weight percent of PEGMEMA) to CO2 is 112 Barrer and the CO2/N2 and CO2/H2 selectivity coefficients are 31 and 7, respectively. The effect of the temperature on gas transport properties was also determined. Finally, the potential application of the copolymer membranes for CO2/light gases separation was explored.  相似文献   

12.
A novel process was proposed for preparation of microporous poly(acrylonitrile–methyl methacrylate) (P(AN–MMA)) membranes by phase inversion techniques using ultrasonic humidifier. Being prepared by dissolving the polymer (PAN–MMA) in the N,N-dimethylformamide (DMF) solution with mechanical stirring, the homogenous casting solution was cast onto a clean glass plate. Successively, the glass plate was exposed to the water vapor produced by ultrasonic humidifier, inducing the phase inversion. It is found the pore size is much more uniform across the cross-section of the membrane than that of the porous membrane prepared by conventional water bath coagulation technique. The microporous membranes were directly obtained after the washing and drying. It had about 1–5 μm of pores and presented an ionic conductivity of 2.52 × 10−3 S/cm at room temperature when gelled with 1 M LiPF6/EC-DMC (1:1 vol.%) electrolyte solution. The test cells with the gel electrolytes prepared from as-prepared microporous membranes showed stable cycling capacities, indicating that the microporous membrane, which was prepared from cheap starting materials acrylonitrile and methyl methacrylate, can be used for the gel electrolyte of lithium batteries.  相似文献   

13.
The conversion of n-C4H10 was undertaken on MoO3/HZSM-5 catalyst at 773–973 K and the phases of molybdenum species were detected by XRD. The XRD results show that bulk MoO3 on HZSM-5 can be readily reduced by n-C4H10 to MoO2 at 773 K and MoO2 can be gradually carburized to molybdenum carbide above 813 K. The molybdenum carbide formed from the carburization of MoO2 with n-C4H10 below 893 K is -MoC1−x with fcc-structure, while hcp-molybdenum carbide formed above 933 K. During the evolution of MoO3 to MoO2 (>773 K) or the carburization of MoO2 to molybdenum carbide (>813 K), deep oxidation, cracking and coke deposition are serious, in particular at higher reaction temperatures, these lead to the poor selectivity to aromatics. Aromatization of n-C4H10 can proceed catalytically on both Mo2C/HZSM-5 and MoO2/HZSM-5, the distribution of the products for the two catalysts is similar below 813 K, but the activity for Mo2C/HZSM-5 is much higher than that for MoO2/HZSM-5.  相似文献   

14.
Hydrogen production by steam reforming of methane using catalytic membrane reactors was investigated first by simulation, then by experimentation. The membrane reactor simulation, using an isothermal and plug-flow model with selective permeation from reactant stream to permeate stream, was conducted to evaluate the effect of permselectivity on membrane reactor performance – such as methane conversion and hydrogen yield – at pressures as high as 1000 kPa. The simulation study, with a target for methane conversion of 0.8, showed that hydrogen yield and production rate have approximately the same dependency on operating conditions, such as reaction pressure, if the permeance ratio of hydrogen over nitrogen ((H2/N2)) is larger than 100 and of H2 over H2O is larger than 15. Catalytic membrane reactors, consisting of a microporous Ni-doped SiO2 top layer and a catalytic support, were prepared and applied experimentally for steam reforming of methane at 500 °C. A bimodal catalytic support, which allows large diffusivity and high dispersion of the metal catalyst, was prepared for the enhancement of membrane catalytic activity. Catalytic membranes having H2 permeances in the range of 2–5 × 10−6 m3 m−2 s−1 kPa−1, with H2/N2 of 25–500 and H2/H2O of 6–15, were examined for steam reforming of methane. Increased performance for the production of hydrogen was experimentally obtained with an increase in reaction-side pressure (as high as 500 kPa), which agreed with the theoretical simulation with no fitting parameters.  相似文献   

15.
Perovskite-type membranes of (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ (BSCF) and (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3−δ (BSFZ) were successfully prepared via liquid-phase sintering using BN as sintering aid. The obtained membranes were examined via powder X-ray diffraction pattern (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and oxygen permeation experiments. It has emerged that the use of BN as sintering aid lowers sintering temperatures in order to obtain dense membranes with relative densities in the range of 93–96% as proven by the Archimedes method. It was further shown that the perovskite structure could be maintained after sintering with BN. Additionally, BN was completely removed from the sintered membranes. Investigation of the microstructure revealed that the average grain size of the membranes was influenced by the amount of BN added prior the sintering process. It was found that large amounts of BN effectively lower the average grain size. Oxygen permeation experiments have shown that the lower the average grain size the lower the oxygen permeation performance, particularly in the case of BSCF. Transmission electron microscopy revealed that no evidence for an amorphous layer or any other interfacial phase in the grain boundary is present.  相似文献   

16.
Polyallylamine (PAAm) was synthesized by free radical polymerization and characterized by Fourier transform infrared resonance (FT-IR) spectroscopy, hydrogen nuclear magnetic resonance (1H NMR) spectroscopy and differential scanning calorimetry (DSC). The composite membranes were prepared by using PAAm–poly(vinyl alcohol) (PVA) blend polymer as the separation layer and polysulfone (PSF) ultrafiltration membranes as the support layer. The surface and cross-section morphology of the membrane was inspected by environmental scanning electron microscopy (ESEM). The gas transport property of the membranes, including gas permeance, flux and selectivity, were investigated by using pure CO2, N2, CH4 gases and CO2/N2 gas mixture (20 vol% CO2 and 80 vol% N2) and CO2/CH4 gas mixture (10 vol% CO2 and 90 vol% CH4). The plots of gas permeance or flux versus feed gas pressure imply that CO2 permeation through the membranes follows facilitated transport mechanism whereas N2 and CH4 permeation follows solution–diffusion mechanism. Effect of PAAm content in the separation layer on gas transport property was investigated by measuring the membranes with 0–50 wt% PAAm content. With increasing PAAm content, gas permeance increases initially, reaches a maximum, and then decreases gradually. For CO2/N2 gas mixture, the membranes with 10 wt% PAAm content show the highest CO2 permeance of about 1.80 × 10−5 cm3 (STP) cm−2 s−1 KPa−1 and CO2/N2 selectivity of 80 at 0.1 MPa feed gas pressure. For CO2/CH4 gas mixture, the membranes with 20 wt% PAAm content display the highest CO2 permeance of about 1.95 × 10−5 cm3 (STP) cm−2 s−1 KPa−1 and CO2/CH4 selectivity of 58 at 0.1 MPa feed gas pressure. In order to explore the possible reason of gas permeance varying with PAAm content, the crystallinity of PVA and PAAm–PVA blend polymers was measured by X-ray diffraction (XRD) spectra. The experimental results show an inverse relationship between crystallinity and gas permeance, e.g., a minimum crystallinity and a maximum CO2 permeance are obtained at 20 wt% PAAm content, indicating that the possibility of increasing CO2 permeance with PAAm content due to the increase of carrier concentration could be weakened by the increase of crystallinity.  相似文献   

17.
Two types of poly(phenylene oxide) (PPO) membranes were prepared: one by chemical modification through sulfonation using chlorosulfonic acid and another by physical incorporation with a heteropolyacid (HPA), viz., phosphotungstic acid. These membranes were tested for the separation of CO2/CH4 mixtures. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction techniques were used to confirm the modified structure of PPO as well as to understand its interactions with gaseous molecules. Scanning electron microscopy (SEM) was used to investigate the membrane morphology. Thermal stability of the modified polymers was assessed by differential scanning calorimetry (DSC), while the tensile strength was measured to evaluate their mechanical stability. Both chemical and physical modifications did not adversely affect the thermally and mechanical stabilities. Experiments with pure CO2 and CH4 gases showed that CO2 selectivity (27.2) for SPPO increased by a factor of 2.2, while the PPO–HPA membrane exhibited 1.7 times increase in selectivity with a reasonable permeability of 28.2 Barrer. An increase in flux was observed for the binary CO2/CH4 mixture permeation with an increasing feed concentration (5–40 mol%) of CO2. An enhancement in feed pressure from 5 to 40 kg/cm2 resulted in reduced CO2 permeability and selectivity due to the competitive sorption of methane. Both the modified PPO membranes were found to be promising for enrichment of methane despite exhibiting lower permeability values than the pristine PPO membrane.  相似文献   

18.
An analytical method for separation and pre-concentration of lead in seawater for determination by inductively coupled plasma optical emission spectrometry has been investigated. Lead was retained in the solid phase (0.5 g) composed of co-precipitated naphthalene and alizarin red. The solid phase quantitatively sorbs Pb(II) at pH 8–9, and the metal was eluted using 5.0 ml of 2 mol l−1 nitric acid. The effect of NaCl, KCl, BaCl2, CaCl2, Na2SO4, MgCl2 and Na3PO4 on the sorption of Pb(II) in the solid phase was studied. A set of solutions containing varying amounts of electrolytes (0.5; 1.0; 3.0 and 5.0% m/v) with Pb (50 μg) was prepared and the recommended procedure applied. The Na3PO4 was found to interfere; the other electrolytes did not interfere up to 5% m/v. A pre-concentration factor of 40 was obtained in this analytical procedure. The limit of detection and limit of quantification for Pb(II) were 53 and 176 μg l−1, respectively. Lead was determined in seawater samples collected in Salvador city, Bahia, Brazil. The precision, expressed as R.S.D., was 1.8–4.6%, and the recovery of lead added to seawater samples was 95–97%.  相似文献   

19.
Composite porous glass membranes were prepared by the sol-gel method. A thin porous glass layer, about 2 μm thick, was coated on the surface of the porous ceramic tubing (Al2O3:99.9 wt.%, pore diameter: 200 nm). The composition of the porous glass layer of the composite membrane was SiO2-ZrO2. Considering from the fact that the desalination ratio of the feed aqueous NaCl solution (NaCl 0.5 wt.%) was about 90% by use of these membranes, they were defect-free. The best composition of the porous glass layer was 70 SiO2-30 ZrO2 from the standpoint of preparing membranes. These membranes had a large water and alkali durability. These membranes can be expected to apply to recovering dyes and paints from organic solvents and to be used as a gas separation membrane.  相似文献   

20.
To develop porous alumina supported MF ZrO2 membranes, ZrO2–Al2O3 composite intermediate layers are considered in order to decrease stress creation during the processing and avoid cracks formation. The relation between distortion stress and sintering shrinkage was experimentally studied. And the cracks formation mechanism was qualitatively evaluated and discussed. Finally, crack-free YSZ membrane with pore size of 0.16 μm on the two ZrO2–Al2O3 intermediate layers possessing a gradient composition was successfully prepared and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号