首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We have investigated Ag(I) mediated folding of a tridentate compound, containing three pyridine flaps tethered to a semirigid scaffold, into a molecular basket, using both experimental and theoretical methods. The basket formation has been shown to be highly favorable in organic media (Delta G degrees = -7.2 kcal/mol), with the assembly process allowing for another ligand to bind preferentially on the outer side.  相似文献   

2.
Generation of vinyl cations is facile by fragmentation of alkenyl(aryl)iodonium trifluoromethanesulfonates. Kinetics and electronic effects were probed by (1)H NMR spectroscopy in CDCl(3). Products of fragmentation include six enol triflate isomers in addition to iodoarenes. The enol triflates arise from direct reaction of a triflate anion with the starting iodonium salts as well as triflate reaction with rearranged secondary cations derived from those salts. G2 calculations of the theoretical isodesmic hydride-transfer reaction between secondary vinyl cation 7 and primary vinyl cation 6 reveal that cation 6 is 17.8 kcal/mol higher in energy. Activation parameters for fragmentation of (Z)-2-ethyl-1-hexenyl(3,5-bis-trifluoromethylphenyl)iodonium triflate, 17e, were calculated using the Arrhenius equation: E(a) = 26.8 kcal/mol, Delta H(++) = 26.2 kcal/mol, and Delta S(++) = 11.9 cal/mol x K. Added triflate increases the rate of fragmentation slightly, and it is likely that for most beta,beta-dialkyl- substituted vinylic iodonium triflates enol triflate fragmentation products are derived from three competing mechanisms: (a) vinylic S(N)()2 substitution; (b) ligand coupling (LC); and (c) concerted aryliodonio departure and 1,2-alkyl shift leading to secondary rather than primary vinyl cations.  相似文献   

3.
Challenging a catalytic cycle: Pd(0) catalysts are readily oxidized by Cu and Ag salts to give dinuclear Pd(I) complexes and Cu(I) or Ag(I) cubanes (see scheme). The reactivities of the resulting Pd(I) dimers are consistent with several observations of additive effects in cross-coupling chemistry. The results indicate the possibility for alternative catalytic cycles involving dinuclear Pd(I) complexes over the currently accepted synergistic cycles involving Pd(0)/Pd(II) intermediates and Cu or Ag.  相似文献   

4.
The nature of interactions between metal ions Ag(I), Hg(II), Cu(II) and chitosan derivative of 1,2-ethanedithiol, QTDT, was investigated by isothermal calorimetry using the membrane breaking technique. Simultaneous determination of thermal effects, Q(int), and amount of cation that interacts, n(int), are described. The experimental data have been interpreted in terms of the Langmuir equation to determine the maximum adsorption capacity to form a monolayer, N(mon), and the energy of interaction for a saturated monolayer per gram of QTDT, Q(mon). With N(mon) and Q(mon), the molar enthalpy of interaction for formation of a monolayer of anchored cations per gram of QTDT, Delta(mon)H(m), was determined. The Delta(mon)H(m) values for Ag(I), Hg(II), and Cu(II) were -60.56, -58.05, and -84.36 kJ mol(-1), respectively. Negative values of DeltaG show the spontaneity of the interaction processes. The least entropically favourable processes, i.e., those which present more negative DeltaS values, seem to be compensated by the more favourable enthalpic parameter.  相似文献   

5.
A series of [Pd(diphosphine)(2)](BF(4))(2) and Pd(diphosphine)(2) complexes have been prepared for which the natural bite angle of the diphosphine ligand varies from 78 degrees to 111 degrees. Structural studies have been completed for 7 of the 10 new complexes described. These structural studies indicate that the dihedral angle between the two planes formed by the two phosphorus atoms of the diphosphine ligands and palladium increases by over 50 degrees as the natural bite angle increases for the [Pd(diphosphine)(2)](BF(4))(2) complexes. The dihedral angle for the Pd(diphosphine)(2) complexes varies less than 10 degrees for the same range of natural bite angles. Equilibrium reactions of the Pd(diphosphine)(2) complexes with protonated bases to form the corresponding [HPd(diphosphine)(2)](+) complexes were used to determine the pK(a) values of the corresponding hydrides. Cyclic voltammetry studies of the [Pd(diphosphine)(2)](BF(4))(2) complexes were used to determine the half-wave potentials of the Pd(II/I) and Pd(I/0) couples. Thermochemical cycles, half-wave potentials, and measured pK(a) values were used to determine both the homolytic ([HPd(diphosphine)(2)](+) --> [Pd(diphosphine)(2)](+) + H*) and the heterolytic ([HPd(diphosphine)(2)](+) --> [Pd(diphosphine)(2)](2+) + H(-)) bond-dissociation free energies, Delta G(H*)* and Delta G(H-)*, respectively. Linear free-energy relationships are observed between pK(a) and the Pd(I/0) couple and between Delta G(H-)* and the Pd(II/I) couple. The measured values for Delta G(H*)* were all 57 kcal/mol, whereas the values of Delta G(H-)* ranged from 43 kcal/mol for [HPd(depe)(2)](+) (where depe is bis(diethylphosphino)ethane) to 70 kcal/mol for [HPd(EtXantphos)(2)](+) (where EtXantphos is 9,9-dimethyl-4,5-bis(diethylphosphino)xanthene). It is estimated that the natural bite angle of the ligand contributes approximately 20 kcal/mol to the observed difference of 27 kcal/mol for Delta G(H-)*.  相似文献   

6.
We report a solid-state multinuclear ((23)Na, (15)N, (13)C, and (31)P) NMR study on the relative affinity of monovalent cations for a stacking G-quartet structure formed by guanosine 5'-monophosphate (5'-GMP) self-association at pH 8. Two major types of cations are bound to the 5'-GMP structure: one at the surface and the other within the channel cavity between two G-quartets. The channel cation is coordinated to eight carbonyl oxygen atoms from the guanine bases, whereas the surface cation is close to the phosphate group and likely to be only partially hydrated. On the basis of solid-state (23)Na NMR results from a series of ion titration experiments, we have obtained quantitative thermodynamic parameters concerning the relative cation binding affinity for each of the two major binding sites. For the channel cavity site, the values of the free energy difference (Delta G degrees at 25 degrees C) for ion competition between M(+) and Na(+) ions are K(+) (-1.9 kcal mol(-1)), NH(4)(+) (-1.8 kcal mol(-1)), Rb(+) (-0.3 kcal mol(-1)), and Cs(+) (1.8 kcal mol(-1)). For the surface site, the values Delta G degrees are K(+) (2.5 kcal mol(-1)), NH(4)(+) (-1.3 kcal mol(-1)), Rb(+) (1.1 kcal mol(-1)), and Cs(+) (0.9 kcal mol(-1)). Solid-state NMR data suggest that the affinity of monovalent cations for the 5'-GMP structure follows the order NH(4)(+) > Na(+) > Cs(+) > Rb(+) > K(+) at the surface site and K(+) > NH(4)(+) > Rb(+) > Na(+) > Cs(+) > Li(+) at the channel cavity site. We have found that the cation-induced stability of a 5'-GMP structure is determined only by the affinity of monovalent cations for the channel site and that the binding of monovalent cations to phosphate groups plays no role in 5'-GMP self-ordered structure. We have demonstrated that solid-state (23)Na and (15)N NMR can be used simultaneously to provide mutually complementary information about competitive binding between Na(+) and NH(4)(+) ions.  相似文献   

7.
A definition of metal vector was given to coordinatively unsaturated metals or asymmetrically coordinated metal complexes in which the metal center is partly blocked by inert chelating ligand(s), thus possess specific reactivity and directionality, such as cis-coordinated square Pd(Ⅱ) or Pt(Ⅱ) complexes. Metal vectors have been extensively used in coordination catalysis and molecular assembly. In 1990, Fujita [ 1 ] first demonstrated the utility of cis-coordinated square Pd(Ⅱ)or Pt(Ⅱ) complexes as a right angular 2D metal vector in the formation of molecular square, a cyclic tetramer with nano-cavity and unique molecular recognition. So far, much attention has been paid to the use of the mononuclear coordination centers (Werner-type metal vectors) in molecular assembly.As late as 1999, Cotton et al. [2] reported the use of cis-coordinated metal-metal bonded dimetal units (Cotton-type metal vectors) to direct assembly of molecular squares.This presentation includes two parts: 1) Werner-type metal vector directed molecular assembly; [3]2) Cotton-type metal vector directed molecular assembly.[4]Firstly, the Werner-type metal vector, cis-coordinated Pd(Ⅱ) nitrate, was used to direct a 6-component self-assembly. This leads to the formation of a molecular bowl or crown with syn,syn,syn conformation. These structures are analogues of calix[3]arenes and can function as anion receptors. Interestingly, an nitrate is found to distort from a trigonal plane into a trigonal pyramid when binding to the bottom of the molecular bowl.Secondly, the Cotton-type metal vector, cis-diRh(Ⅱ, Ⅱ), was used to assemble di- or poly-carboxylate anions into neutral supermolecules. Most interestingly, a calixarene-based carceplex with four cis-diRh(Ⅱ, Ⅱ) fastners was obtained[5].All self-assembling entities were studied by both X-ray crystallographic analysis and solution NMR spectra, which are consistent with the presence of assembling structures even in solution.  相似文献   

8.
The reactions of mercury(II) halides with the tetraphosphinitoresorcinarene complexes [P4M5X5], where M=Cu or Ag, X=Cl, Br, or I, and P4=(PhCH2CH2CHC6H2)4(O2CR)4(OPPh2)4 with R=C6H11, 4-C6H4Me, C4H3S, OCH2CCH, or OCH2Ph, have been studied. The reactions of the complexes with HgX2 when M=Ag and X=Cl or Br occur with elimination of silver(I) halide and formation of [P4Ag2X(HgX3)], but when M=Ag and X=I, the complexes [P4Ag4I5(HgI)] are formed. When M=Cu and X=I, the products were the remarkable capsule complexes [(P4Cu2I)2(Hg2X6)]. When M=Ag and X=I, the reaction with both CuI and HgI2 gave the complexes [P4Cu2I(Hg2I5)]. Many of these complexes are structurally characterized as containing mercurate anions weakly bonded to cationic tetraphosphinitoresorcinarene complexes of copper(I) or silver(I) in an unusual form of host-guest interaction. In contrast, the complex [P4Ag4I5(HgI)] is considered to be derived from an anionic silver cluster with an iodomercury(II) cation. Fluxionality of the complexes in solution is interpreted in terms of easy, reversible making and breaking of secondary bonds between the copper(I) or silver(I) cations and the mercurate anions.  相似文献   

9.
1,3,5-Tris{2'-[(pyrazol-1-yl)methyl]phenyl}benzene, 4, and its complexes with Cu(I) and Ag(I) have been prepared and characterized. Both CuI4 and AgI4 triflate crystallize in the rhombohedral space group R3, with the cations and anions each exhibiting crystallographically imposed 3-fold (C3) symmetry. In both complexes, 4 behaves as a tris(pyrazolyl) eta6-arene ligand whose arms act as three-pronged tweezers to form chiral, propeller-like cations with pyramidal MN(pyrazole)3 coordination geometries. Centers of symmetry in the space group ensure that the crystals are racemates, with equal numbers of P,P,P and M,M,M enantiomers. In broad outline, each cation is shaped like a three-legged stool, with the metal ion centered at the top and pointed downward from a triangular N(pyrazole) plane toward the center of gravity (Cg) of the central benzene ring (a metal-endo conformation), which constitutes the bottom shelf of the stool. The Cu(I)...Cg and Ag(I)...Cg distances, 3.195(2) and 3.165(2) A, respectively, support the existence of an eta6 bonding interaction with Ag(I) and, to a lesser extent, with Cu(I). NMR data for AgI4 suggest rapid interconversion of this cation in solution between P,P,P and M,M,M enantiomers. Our inability to prepare any Cu(II) complexes with 4 is consistent with cyclovoltammetric results, which suggest that the ligand is more easily oxidized than Cu(I).  相似文献   

10.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

11.
Gaseous isomolecular equilibria of the type CuX + Ag = Cu + AgX, where X = F, Cl, Br, and I, were studied by effusion-beam mass spectrometry at elevated temperatures, and the differences between the dissociation energies of the CuX and AgX molecular species were determined with relatively high accuracy from thermochemical analysis of the equilibrium data. Analysis of literature data, plus new information on AgBr, yielded accurate values of D degrees 0 in kcal mol(-1) for CuF (102.0), AgCl (74.4), AgBr (66.4), and AgI (59.7), from which values were derived for AgF (81.5), CuCl (89.6), CuBr (79.2), and CuI (69.4), all +/-1 kcal mol(-1). The result is a consistent set of dissociation energies for all eight of the Cu and Ag monohalides that will be useful in checking the reliability of quantum chemical calculations for these molecular species containing elements of increasing atomic number. Also, the isomolecular exchange equilibrium between CuF and NiF was studied in a similar fashion, leading to D degrees 0(NiF) = 104.4 +/- 1.4 kcal mol(-1).  相似文献   

12.
Single crystals of Ag(I) and Cu(II) complexes with 4-pyridin-4-yl-(1,3) dithiol-2-one (PYDO), [Ag(PYDO)2]ClO4, [Ag(PYDO)2(NO3)], and [Cu(PYDO)2(NO3)2] have been prepared and characterized. PYDO displays excellent coordination to Cu(II) and Ag(I). The 1,3-dithiol five-member ring is an electron donor that enhances the coordination ability of the py group. HOMO-1 σ coordination and d–π electron back-donating from metal to ligand (LUMO) are suggested based on the calculation. Weak interactions and secondary bonds from the anion to cation play an important role in the molecular assembly.  相似文献   

13.
Chen K  Liang LL  Zhang YQ  Zhu QJ  Xue SF  Tao Z 《Inorganic chemistry》2011,50(16):7754-7760
In the present study, we introduce the coordination of samarium-Q[5] systems in the absence and presence of the third species, and the corresponding supramolecular assemblies are dependent upon the addition of the third species. In the absence of the third species, a samarium cation (nitrate salt) coordinates to a Q[5] molecule and forms a molecular bowl; in the presence of an organic molecule (hydroquinone), a one-dimensional polymer of ···Sm-Q[5]-Sm-Q[5]-Sm··· is formed through direct coordination of Sm cation to the portal carbonyl oxygens. In the presence of nickel cations (chloride salt), an infinite 1D supramolecular chain is constructed of samarium/cucurbit[5]uril molecular bowl through ion-dipole interaction and hydrogen binding; in addition, the stacking of the supramolecular chains forms a novel hexagonal open framework. Remarkably, in the presence of copper cations (chloride salt), Q[5]-based hexagonal netting sheets are constructed of 6-Q[5]-ring structures.  相似文献   

14.
The gas phase ion-molecule reactions of silver cluster cations (Ag(n)(+)) and silver hydride cluster cations (Ag(m)H(+)) with 2-iodoethanol have been examined using multistage mass spectrometry experiments in a quadrupole ion trap mass spectrometer. These clusters exhibit size selective reactivity: Ag(2)H(+), Ag(3)(+), and Ag(4)H(+) undergo sequential ligand addition only, while Ag(5)(+) and Ag(6)H(+) also promote both C-I and C-OH bond activation of 2-iodoethanol. Collision induced dissociation (CID) of Ag(5)HIO(+), the product of C-I and C-OH bond activation by Ag(5)(+), yielded Ag(4)OH(+), Ag(4)I(+) and Ag(3)(+), consistent with a structure containing AgI and AgOH moieties. Ag(6)H(+) promotes both C-I and C-OH bond activation of 2-iodoethanol to yield the metathesis product Ag(6)I(+) as well as Ag(6)H(2)IO(+). The metathesis product Ag(6)I(+) also promotes C-I and C-OH bond activation.DFT calculations were carried out to gain insights into the reaction of Ag(5)(+) with ICH(2)CH(2)OH by calculating possible structures and their energies for the following species: (i) initial adducts of Ag(5)(+) and ICH(2)CH(2)OH, (ii) the subsequent Ag(5)HIO(+) product, (iii) CID products of Ag(5)HIO(+). Potential adducts were probed by allowing ICH(2)CH(2)OH to bind in different ways (monodentate through I, monodentate through OH, bidentate) at different sites for two isomers of Ag(5)(+): the global minimum "bowtie" structure, 1, and the higher energy trigonal bipyramidal isomer, 2. The following structural trends emerged: (i) ICH(2)CH(2)OH binds in a monodentate fashion to the silver core with little distortion, (ii) ICH(2)CH(2)OH binds to 1 in a bidentate fashion with some distortion to the silver core, and (iii) ICH(2)CH(2)OH binds to 2 and results in a significant distortion or rearrangement of the silver core. The DFT calculated minimum energy structure of Ag(5)HIO(+) consists of an OH ligated to the face of a distorted trigonal bipyramid with I located at a vertex, while those for both Ag(4)X(+) (X = OH, I) involve AgX bound to a Ag(3)(+) core. The calculations also predict the following: (i) the ion-molecule reaction of Ag(5)(+) and ICH(2)CH(2)OH to yield Ag(5)HIO(+) is exothermic by 34.3 kcal mol(-1), consistent with the fact that this reaction readily occurs under the near thermal experimental conditions, (ii) the lowest energy products for fragmentation of Ag(5)HIO(+) arise from loss of AgI, consistent with this being the major pathway in the CID experiments.  相似文献   

15.
Iodine/silver(I) oxide (I(2)/Ag(2)O) reacts highly stereoselectively in the single, double, and triple anti epoxidation of the spherical 1,4,7-triene, 10-methyl-2,3:5,6:8,9-tris(cyclohexano)triquinacene 1. All of the three epoxides 3, 4, and 5 obtained with this reagent contain the epoxy groups at the convex side of the triquinacene framework. The stereochemical course of the epoxidation with I(2)/Ag(2)O is clearly distinct from that observed with m-chloroperbenzoic acid (MCPBA), which gives the same monoepoxide (3) but exclusively anti,syn di- and triepoxides (6-8) bearing at least one epoxy group at the concave side of the triquinacene framework. Epoxidation of the related three-fold 1,4-cyclohexadiene, tris(cyclohexeno)triquinacene 2, with MCPBA occurs similarly to the conversion of 1, whereas I(2)/Ag(2)O reacts with high regioselectivity at the less electron-rich peripheral double bonds of 2 giving triepoxides 12 and 13. The molecular structure of triepoxide 8 has been elucidated in detail by X-ray crystal structure analysis.  相似文献   

16.
Gradient-corrected (BP86) density functional calculations were used to study alternative mechanisms of the metathesis reactions between ethene and model catalysts [(PH(3))(L)Cl(2)Ru[double bond]CH(2)] with L=PH3 (I) and L=C(3)N(2)H(4)=imidazol-2-ylidene (II). On the associative pathway, the initial addition of ethene is calculated to be rate-determining for both catalysts (Delta G(22-25)*[double bond] kcal mol(-1)). The dissociative pathway starts with the dissociation of phosphane, which is rather facile (Delta G(298)* is approximately equal to 5-10 kcal mol(-1)). The resulting active species (L)Cl(2)Ru[double bond]CH(2) can coordinate ethene cis or trans to L. The cis addition is unfavorable and mechanistically irrelevant (Delta G(298)* is approximately equal to 21-25 kcal mol(-1)). The trans coordination is barrierless, and the rate-determining step in the subsequent catalytic cycle is either ring closure of the complex to yield the ruthenacyclobutane (catalyst I, Delta G(298)*=12 kcal mol(-1)), or the reverse reaction (catalyst II, ring opening, Delta G(298)*=10 kcal mol(-1)), that is, II is slightly more active than I. For both catalysts, the dissociative mechanism with trans olefin coordination is favored. The relative energies of the species on this pathway can be tuned by ligand variation, as seen in (PMe(3))(2)Cl(2)Ru[double bond]CH(2) (III), in which phosphane dissociation is impeded and olefin insertion is facilitated relative to I. The differences in calculated relative energies for the model catalysts I-III can be rationalized in terms of electronic effects. Comparisons with experiment indicate that steric effects must also be considered for real catalysts containing bulky substituents.  相似文献   

17.
Sector-field mass spectrometry is used to probe the fragmentation patterns of cationic dinuclear iron chloride clusters Fe(2)Cl(n)()(+) (n = 1-6). For the chlorine-rich, high-valent Fe(2)Cl(n)()(+) ions (n = 4-6), losses of atomic and molecular chlorine prevail in the unimolecular and collision-induced dissociation patterns. Instead, the chlorine deficient, formally low-valent Fe(2)Cl(n)()(+) clusters (n = 1-3) preferentially undergo unimolecular degradation to mononuclear FeCl(m)()(+) ions. In addition, photoionization is used to determine IE(Fe(2)Cl(6)) = 10.85 +/- 0.05 eV along with appearance energy measurements for the production of Fe(2)Cl(5)(+) and Fe(2)Cl(4)(+) cations from iron(III) chloride vapor. The combination of the experimental results allows an evaluation of some of the thermochemical properties of the dinuclear Fe(2)Cl(n)()(+) cations: e.g., Delta(f)H(Fe(2)Cl(+)) = 232 +/- 15 kcal/mol, Delta(f)H(Fe(2)Cl(2)(+)) = 167 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(3)(+)) = 139 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(4)(+)) = 113 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(5)(+)) = 79 +/- 5 kcal/mol, and Delta(f)H(Fe(2)Cl(6)(+)) = 93 +/- 2 kcal/mol. The analysis of the data suggests that structural effects are more important than the formal valency of iron as far as the Fe-Cl bond strengths in the Fe(2)Cl(n)()(+) ions are concerned.  相似文献   

18.
Effects of zeolite support on reactivity of Pd 4 cluster toward dihydrogen molecules were studied at the DFT level using T6 (six-ring) and T24 (sodalite cage) clusters as models of zeolite FAU. It has been found that Pd 4 cluster binds to O-centers of T6 cluster via eta (3) and eta (2) coordination modes, leading to three different T6/Pd 4 clusters. For the energetically most stable triplet state T6/Pd 4 structures, the energy of interaction between Pd 4 and the constrained T6 ring is calculated to be ca. -5 kcal/mol. Encapsulating Pd 4 in a sodalite cage (T24) with the full relaxation of cluster geometry resulted in the Pd 4-zeolite interaction energy of -7.4 kcal/mol after correcting for basis set superposition error. The H-H bond activation barrier associated with the first H 2 addition to the triplet state T6/Pd 4 clusters (Delta E 0/Delta H, kcal/mol) varies from (2.2/0.7) to (3.2/2.0) to (4.8/3.5), depending on the path. Comparison of the calculated H 2 addition barriers for the T6-supported and gas-phase Pd 4 indicates that embedding of Pd 4 on zeolite reduces this barrier slightly (by 1.8/2.1 kcal/mol). Interestingly, the characteristic gas phase Pd 4-H 2 active site structural motif has been preserved in the T6-supported transition state structures. The heat of the reaction of the addition of first H 2 to the triplet state T6/Pd 4 ranges from (-17.6/-18.9) to (-21.8/-23.5) for the paths considered. The addition of the second, third and fourth H 2 molecules to the respective first H 2 addition products leads to the dissociative addition product only for the continuation of the single first H 2 addition path.  相似文献   

19.
The weak metal-metal interactions of Pt(II)-Ag(I)/Cu(I) have been investigated by ab initio method at MP2 level through the model complexes [trans-Pt(PH3)2(CN)2-M(PH3)2+] (M=Ag,Cu). The calculated interaction energy of 12.9 and 11.5 kcal mol(-1) for [trans-Pt(PH3)2(CN)2-Ag(PH3)2+] and [trans-Pt(PH3)2(CN)2-Cu(PH3)2+] respectively, are in the middle of the van der Waals force and the strong hydrogen bond. The estimated equilibrium separations between Pt and M, r(eq)(Pt-M) (3.32 A for M=Ag and 3.23 A for M=Cu), lie within the region expected for weak metal-metal interaction. The electronic dispersive contributions dominate the weak interaction.  相似文献   

20.
The binuclear silver(I) complex of a Schiff base oligopyrrolic macrocycle was prepared in high yield and fully characterized. UV-visible absorption and 1H NMR spectroscopic analyses reveal that coordination of Ag(I) cations is subject to a strong positive homotropic allosteric effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号