首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copolymer brushes growing onto magnetic nanoparticles were prepared by surface chain transfer free radical polymerization. Block copolymer brushes (P(PEGMA)-co-PNIPAAm) consist of poly(ethylene glycol) monomethacrylate (PEGMA) and N-isopropylacrylamide monomer. X-ray photoelectron spectroscopy (XPS) characterized the chemical composition of copolymer. Thermogravimetric analysis (TGA) suggested that the amount of copolymer on magnetic nanoparticles decreased with increasing azodiisobutyronitrile (AIBN). The saturation magnetization decreased significantly with increasing P(PEGMA)-co-PNIPAAm. The thermosensitive point is about 43 °C for magnetic nanoparticles with 33.8% P(PEGMA)-co-PNIPAAm.  相似文献   

2.
Epoxy-functionalized magnetic polymer microspheres with high magnetic responsiveness were prepared through a one-step photo-initiated miniemulsion polymerization. This kind of core-shell particle can be synthesized successfully with hydrophilic monomer, glycidyl methacrylate, as a single monomer by a 10 min ultraviolet irradiation, and phase separation induced eccentric cores. The morphology of the particles was examined with a transmission electron microscope and a scanning electron microscope. The incorporation of magnetic particles was characterized with X-ray diffraction. The magnetic content of the microspheres was detected by both vibrating sample magnetometer and thermo-gravimetric analyzer.  相似文献   

3.
Surface treated magnetic particles were used to prepare well encapsulated submicron polystyrene/magnetic (PS/Fe3O4) composite microspheres via miniemulsion polymerization. The effects of the different surface treatment agents Disperbyk-106, Disperbyk-111, KH550, sodium dodecyl sulfate (SDS) and oleic acid were investigated on the encapsulation of polymer via miniemulsion polymerization. The interface interactions between magnetic particles, dispersants and coupling agents were analyzed from their IR spectra. It was found that Disperbyk-106 was the best dispersant in terms of preparing magnetic polymer microspheres with high encapsulation efficiency. The effect of wet or dry magnetic particles on encapsulation was also discussed.  相似文献   

4.
A novel method for the preparation of polymer-based, magnetic microspheres is proposed. Pre-made, poly(styrene-glycidyl methacrylate) (PS-GMA) particles of micron size were swollen by a mixture of N-methyl-2-pyrrolidone and water, and then incubated with superparamagnetic nanoparticles. The nanoparticles were allowed to diffuse into polymer microspheres during the incubation, became entrapped and made the polymer microspheres superparamagnetic. These magnetic PS-GMA microspheres were chemically modified and then coupled with single-stranded oligonucleotides as probes for DNA hybridization. The immobilized probes showed repeatable capture of target oligonucleotides.  相似文献   

5.
Magnetic microspheres were synthesized by the suspension polymerization of glycidyl methacrylate (GMA), methacrylic acid (MAA) and divinyl benzene (DVB) in the presence of oleic acid-coated Fe3O4 nanoparticles. Triacylglycerol lipase from porcine pancreas was covalently immobilized on the magnetic microspheres via the active epoxy groups with the activity yield up to 63% (±2.3%) and enzyme loading of 39 (±0.5) mg/g supports. The resulting immobilized lipase had higher optimum temperature compared with those of free lipase and exhibited better thermal, broader pH stability and excellent reusability. Furthermore, the catalyzed capability of immobilized lipase was also investigated by catalyzing synthesis of hexyl acetate and the esterification conversion rate reached to 83% (±2.5%) after 12 h in nonaqueous solvent.  相似文献   

6.
Magnetic polymer composite microspheres with high magnetite contents were prepared by dispersion polymerization of styrene (St) and glucidylmethacrylate (GMA), in which Fe3O4 nanoparticles were co-stabilized by oleic acid and silane surfactants. The microstructure of the composite microspheres was characterized by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results demonstrated the presence of a hybrid morphology with organic polymer-encapsulated inorganic particles. Subsequently, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM) were used to evaluate the magnetite content of the microspheres. It was found that an accordant magnetite content of about 70 wt%, could be obtained for the magnetic polymer microspheres, a value significantly higher than those reported thus far. The possible mechanism for the formation of the microspheres was proposed.  相似文献   

7.
采用柠檬酸钠为稳定剂、聚乙烯吡咯烷酮为分散剂,以水合肼还原银氨络离子制备出稳定的单分散胶态纳米银。以制得的纳米银溶胶,通过正相微乳液聚合,制备纳米银/聚苯乙烯复合材料。利用紫外-可见光(UV-Vis)吸收光谱研究了纳米银的光吸收特性,采用X射线衍射(XRD)和透射电镜(TEM)对产物的晶体结构、形貌及尺寸进行了分析。结果表明:所制得的银纳米颗粒属立方晶系,平均粒径约10 nm,且无团聚及氧化现象;聚合过程中,纳米银的晶体结构、形貌及尺寸未发生明显变化。凝胶渗透色谱(GPC)分析表明聚苯乙烯基体重均分子量达4.03106,分子量分布指数为1.21;热重-示差扫描量热(TG-DSC)分析表明所制备的复合材料具有优异的热稳定性。  相似文献   

8.
微乳液聚合制备纳米银/聚苯乙烯复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
采用柠檬酸钠为稳定剂、聚乙烯吡咯烷酮为分散剂,以水合肼还原银氨络离子制备出稳定的单分散胶态纳米银。以制得的纳米银溶胶,通过正相微乳液聚合,制备纳米银/聚苯乙烯复合材料。利用紫外-可见光(UV-Vis)吸收光谱研究了纳米银的光吸收特性,采用X射线衍射(XRD)和透射电镜(TEM)对产物的晶体结构、形貌及尺寸进行了分析。结果表明:所制得的银纳米颗粒属立方晶系,平均粒径约10 nm,且无团聚及氧化现象;聚合过程中,纳米银的晶体结构、形貌及尺寸未发生明显变化。凝胶渗透色谱(GPC)分析表明聚苯乙烯基体重均分子量达4.03106,分子量分布指数为1.21;热重-示差扫描量热(TG-DSC)分析表明所制备的复合材料具有优异的热稳定性。  相似文献   

9.
Magnetic microspheres, with mean particle sizes from 23 to 32 μm were produced by the ultrasonic atomisation of a suspension of magnetite particles, of approximately 200 nm diameter, in a solution of poly–l–lactic acid (PLLA). The mean particle diameter and the width of the particle diameter distribution both increased with increasing magnetite concentration. The particles appear to be suitable for magnetic hyperthermic treatment of liver cancers, with the hysteresis loop areas increasing linearly with nominal magnetite concentration up to 30 wt% magnetite.  相似文献   

10.
Magnetic microspheres (MMS) are useful tools for a variety of medical and pharmaceutical applications. Typically, commercially manufactured MMS exhibit broad size distributions. This polydispersity is problematic for many applications. Since the direct synthesis of monodisperse MMS is often fraught with technical challenges, there is considerable interest in and need associated with the development of techniques for size-dependent fractionation of MMS. In this study we demonstrated continuous size-dependent fractionation of sub-micron scale particles driven by secondary (Dean effect) flows in curved microfluidic channels. Our goal was to demonstrate that such techniques can be applied to MMS containing superparamagnetic nanoparticles. To achieve this goal, we developed and tested a microfluidic chip for continuous MMS fractionation. Our data address two key areas. First, the densities of MMS are typically in the range 1.5–2.5 g/cm3, and thus they tend be non-neutrally buoyant. Our data demonstrate that efficient size-dependent fractionation of MMS entrained in water (density 1 g/cm3) is possible and is not significantly influenced by the density mismatch. In this context we show that a mixture comprising two different monodisperse MMS components can be separated into its constituent parts with 100% and 88% success for the larger and smaller particles, respectively. Similarly, we show that a suspension of polydisperse MMS can be separated into streams containing particles with different mean diameters. Second, our data demonstrate that efficient size-dependent fractionation of MMS is not impeded by magnetic interactions between particles, even under application of homogeneous magnetic fields as large as 35 kA/m. The chip is thus suitable for the separation of different particle fractions in a continuous process and the size fractions can be chosen simply by adjusting the flow velocity of the carrier fluid. These facts open the door to size dependent fractionation of MMS.  相似文献   

11.
《Current Applied Physics》2019,19(8):924-927
The flattening of FeSiAl soft magnetic powder was achieved by ball milling process, and MnZn/FeSiAl composite magnetic powder core was prepared by press molding. The effect of different coating amount of MnZn ferrite on the soft magnetic properties of FeSiAl was studied. At the same time, the optimal stress-relieving annealing temperature of the composite magnetic powder core is revealed. The results showed that the addition of MnZn ferrite affected the magnetic properties such as saturation magnetization (Ms), initial permeability (μi) and power loss (Pcm) of FeSiAl soft magnetic. With the increase of MnZn ferrite addition content, the saturation magnetization of composites decreased gradually, and the magnetic permeability increased first and then decreased, and the loss decreased first and then increased. When the addition content of MnZn ferrite was 5%, the permeability reached the maximum, which was 28.1% higher than that of the pure FeSiAl magnetic powder core under the same conditions. At the same time, the loss was the lowest, which was 13.3% lower than the pure FeSiAl powder core under the same conditions. When the annealing temperature is around 650 °C, the magnetic powder core has the largest magnetic permeability and the lowest loss.  相似文献   

12.
One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800–1100 μm.The adsorption of Cu(II) onto chitosan–magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.  相似文献   

13.
A procedure is presented to determine the permanent magnetic dipole moment of composite microspheres containing magnetic nanoparticles with a blocked magnetic dipole moment. The composite particles are dispersed in a solvent, and the complex magnetic susceptibility is measured from 0.1 to 1000 Hz using a highly sensitive new setup. Composite particles with a permanent magnetic dipole moment are revealed by a characteristic frequency that corresponds to the Brownian rotation of the microspheres. From measured susceptibility spectra, we calculate the permanent magnetic dipole moment of recently developed cobalt ferrite-doped silica and latex microspheres.  相似文献   

14.
In this study, magnetic polymer-coated microspheres were prepared by the microemulsion polymerization of styrene (St), methacrylic acid (MAA), acryamide (AM) in the presence of emulsifiers with the size of 1–5 μm. The magnetic material (i.e. Fe3O4) coated with oleic acid used in the preparation of the microspheres was synthesized in a classical co-precipitation procedure. The morphological and magnetic properties of the microspheres were investigated by different techniques (i.e. TEM, TGA, optical microscopy, vibrating sample magnetometer). The results indicated that the magnetic microspheres were superparamagnetic, well shaped spheres, mono-dispersed with abundant functional groups on the surfaces of the magnetic microspheres and good thermal stability. The microspheres could be linked well with the avidin and FITC antibody.  相似文献   

15.
In this study, the preparation method for magnetic carbonaceous polysaccharide (Fe3O4@CP) microspheres was developed to increase the yield and encapsulation efficiency using a suitable quantity of NaOH as the catalysis. The optimum fabrication condition was identified through a series of experiment, under which the resulting Fe3O4@CP microspheres show good magnetic properties. The saturation magnetization was 60.629 emu/g and the magnetite content increased up to 81.7%. The shell of the microspheres was carbonaceous polysaccharide with rich hydroxyl and carbonyl groups located on the surface, and the mean size was less than 300 nm. The formation mechanism of Fe3O4@CP was also discussed in this paper.  相似文献   

16.
A magnetic core–shell-layered polymer microsphere (MPS) was successfully synthesized by a dispersion polymerization route, where the modified Fe3O4 nanoparticles (MFN) were used as a core, while poly(maleic anhydride-co-methacrylic acid) P(MAH-co-MAA) as a shell was covered on the surface of the Fe3O4 nanoparticles. Environmental scanning electron microscope (ESME) and transmission electron microscope (TEM) measurements indicate that the magnetic P(MAH-co-MAA)/Fe3O4 composite microspheres assume sphericity and have a novel core–shell-layered structure. The crystal particle sizes of the unimproved Fe3O4 and the MFN samples vary from 8 to 16 nm in diameter, and the average size is about 10.6 nm in diameter. The core–shell magnetic composite microspheres can be adjusted by changing the stirring speed. Since multiple Fe3O4 cores were coated with a proper percentage of P(MAH-co-MAA) copolymers, and therefore lower density was acquired for the MPS, which improved sedimentation and dispersion behavior. The saturated magnetization of pure Fe3O4 nanoparticles reaches 48.1 emu g−1 and the value for composite nanoparticles was as high as 173.5 emu g−1. The nanoparticles show strong superparamagnetic characteristics and can be expected to be used as a candidate for magnetism-controlled drug release.  相似文献   

17.
To tailor the interfacial interaction in magnetic metal nanoparticles filled polymer composites, the surfaces of iron, cobalt and nickel nanoparticles were grafted by irradiation polymerization. In the current report, effects of grafting conditions, including irradiation atmosphere, irradiation dose and monomer concentration, on the grafting reaction are presented. The interaction between the nanoparticles and the grafted polymer was studied by thermal analysis and X-ray photoelectron spectrometry. It was found that there is a strong interfacial interaction in the form of electrostatic bonding in the polymer-grafted nanoparticles. The dispersibility of the modified nanoparticles in chloroform was significantly improved due to the increased hydrophobicity.  相似文献   

18.
In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe3O4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.  相似文献   

19.
The cross-linked microspheres 4VP/St made of 4-vinylpyridine (4VP) and styrene(St) were prepared with suspension copolymerization method using ethyl glycol dimethacylate (EGDMA) as cross-linker and polyvinyl alcohol (PVA) as disperser. The cobalt tetraphenylporphyrins (CoPs) were immobilized on 4VP/St microspheres via the axial coordination reaction between CoPs and the pyridine groups of 4VP/St microspheres, resulting in the functional microspheres CoP-4VP/St. The chemical structure of 4VP/St and CoP-4VP/St were characterized with infrared spectrum and their morphologies were observed with the scanning electron microscope. The experimental results show that via controlling the various reaction conditions of the suspension copolymerization, the 4VP/St microspheres with excellent sphericity and narrow particle diameter distribution can be gained. In addition, CoPs are successfully immobilized on 4VP/St microspheres by means of Co-N bonds, on which the immobilized content of CoPs goes up to 10.7-17.5 μmol/g.  相似文献   

20.
Novel dual-functional nanospheres composed of Fe3O4 nanoparticles embedded in a thermo-sensitive polymer were synthesized by emulsifier-free emulsion polymerization. The Fe3O4 nanoparticles were prepared by chemical precipitation. The surface of these particles was modified by oleic acid to achieve stability against agglomeration. These stable particles were then polymerized using N-isopropylacrylamide as the main monomer, divinylbenzene as the crosslinker and potassium persulfate as the initiator. The nanospheres were characterized by Fourier-transform infrared spectrum, transmission electron microscopy, thermogravimetric analysis, vibrating sample magnetometer and dynamic light scattering. The results show that the lower critical solution temperature of thermo-sensitive magnetic immunomicrospheres was between 40 and 45 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号