首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gallium and indium hydrazides, Ga[N(SiMe(3))NMe(2)](3) (1) and In[N(SiMe(3))NMe(2)](3) (2), were synthesized from the reactions of metal chlorides and Li[N(SiMe(3))NMe(2)]. Single crystal X-ray crystallographic analysis revealed that compound 2 was monomeric with trigonal planar geometries on the indium and the indium-bonded nitrogen atoms. The average In[bond]N distance of 2.078(3) A and the N[bond]In[bond]N[bond]N dihedral angles did not provide clear structural evidence of In[bond]N pi-bonding. The electronic absorption spectra of the indium hydrazido complex revealed transitions at significantly lower energies compared to those observed in the tris(amido) compounds, In[N(SiMe(3))(2)](3) (3) and In[N((t)Bu)(SiMe(3))](3) (4). The absorptions of the indium and gallium compounds were attributed to ligand-metal charge transfer transitions. Trends in the electronic transitions for compounds 2 and 3 calculated at the time-dependent density functional and configuration interaction including single excitations levels, both using a minimal basis set, were consistent with the experimental data, and Mulliken charge analyses support the assignment to ligand-to-metal charge transfer transitions. These calculations also demonstrated the presence of pi-bonding between the In and N p-orbitals, and an analogy is drawn to the frontier molecular orbitals of trimethylenemethane. The low-lying spectroscopic transition in 2, and thus its yellow color, results from mixing of the lone pair electrons on the beta-nitrogens of the hydrazido ligands with the HOMO of the InN(3) core.  相似文献   

2.
A series of novel heterobimetallic group 1/strontium and group 1/calcium aryloxo complexes having the composition [MAe(Odpp)3] [Ae=Sr and M=Na (1), K (2, 3), Cs (4); Ae=Ca and M=Na (5), K (6), Cs (7)] or [M2Ae(Odpp)4] [M=Li and Ae=Sr (9), Ca (10)] have been prepared using 2,6-diphenylphenol (HOdpp) as the ligand. Through the use of solid-state direct metalation, these compounds were obtained either directly from the reaction vessel or after workup in toluene. The Lewis base adduct [KCa(Odpp)3(thf)] (8) was obtained by treatment of [KCa(Odpp)3] (6) with tetrahydrofuran (thf). All of the compounds displayed extensive metal-pi-arene interactions, which provide significant stabilization in these reactive species. The thermal stabilities and volatilities of representative heterobimetallic strontium and calcium complexes were investigated using thermogravimetric analysis.  相似文献   

3.
As previously shown, alkali and alkaline earth metal iodides in nonaqueous, aprotic solvents behave like transition metal halides, forming cis- and trans-dihalides with various neutral O-donor ligands. These compounds can be used as precursors for the synthesis of new mixed alkali/alkaline earth metal aggregates. We show here that Ln2+ ions form isostructural cluster compounds. Thus, with LiOtBu, 50% of the initial iodide can be replaced in MI2, M=Ca, Sr, Ba, Eu, to generate the mixed-metal alkoxide aggregates [IM(OtBu)4{Li(thf)}4(OH)], for which the M--OH contacts were investigated by theoretical methods. With M'OPh (M'=Li, Na), a new mixed-metal aryloxide cluster type [MM'6(OPh)8(thf)6] is obtained for M=Ca, Sr, Ba, Sm, Eu. Their stability versus DME (DME=1,2-dimethoxyethane) as bidentate ligand is studied.  相似文献   

4.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

5.
The novel quaternary reduced molybdenum oxides MTi(0.7)Mo(0.3)Mo(5)O(10) (M = Sr, Eu) have been synthesized by solid-state reaction at 1400 degrees C for 48 h in sealed molybdenum crucibles. Their crystal structures were determined on single crystals by X-ray diffraction. Both compounds crystallize in the orthorhombic space group Pbca with 8 formula units per cell and the following lattice parameters: a(Sr) = 9.1085 (7), b(Sr) = 11.418 (1), and c(Sr) = 15.092 (3) A; a(Eu) = 9.1069 (7), b(Eu) = 11.421 (2), and c(Eu) = 15.075 (1) A. The Mo network is dominated by bioctahedral Mo(10) clusters, which coexist randomly with Mo(11) and Mo(12) clusters (monocapped and bicapped Mo(10) clusters). The Mo-Mo distances within the clusters range from 2.62 to 2.92 A and the Mo-O distances from 1.99 to 2.17 A as usually observed in the reduced molybdenum oxides. The Sr(2+) and Eu(2+) ions occupy large cavities, which result from the fusion of two cubooctahedra and thus are surrounded by 11 oxygen atoms. The M-O distances range from 2.50 to 3.23 A for the Sr compound and from 2.49 to 3.24 A for the Eu analogue. Single-crystal resistivity measurements indicate that both materials are poor metals with transitions to semiconducting states below 50 and 40 K and room temperature resistivity values of 9 x 10(-3) and 5 x 10(-3) Omega.cm for the Sr and Eu compounds, respectively. The magnetic susceptibility data indicate paramagnetic behavior due to the Eu(2+) moment at high temperatures for the Eu compound and do not reveal the existence of localized moments on the Mo and Ti sublattice in the Sr compound. An XPS study clearly suggests that the isolated Ti ions are tetravalent. Theoretical considerations preclude the existence of heterometallic Mo-Ti clusters.  相似文献   

6.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

7.
Li B  Corbett JD 《Inorganic chemistry》2007,46(21):8812-8818
The title phases were synthesized via high-temperature solid-state methods and structurally characterized by single-crystal X-ray diffraction. The phase widths of both SrMg(x)In(4-x) (0.85 相似文献   

8.
Dai JC  Corbett JD 《Inorganic chemistry》2007,46(11):4592-4598
The title compounds were prepared from the elements by high-temperature solid-state synthesis techniques. X-ray structural analyses shows that BaAu2In2 (1) and SrAu2In2 (2) crystallize in a new orthorhombic structure, Pnma, Z=4 (a=8.755(2), 8.530(2) A; b=4.712(1), 4.598(1) A; c=12.368(3), 12.283(4) A, respectively). Gold substitutes for 50% of the indium atoms in the tetragonal BaIn4 and monoclinic SrIn4 parents to give this new and more flexible orthorhombic structure. The Ae atoms in this structure are contained within chains of hexagonal prisms built of alternating In and Au that have additional augmenting atoms around their waists from further condensation of parallel displaced chains. The driving forces for these structural changes are in part the shorter Au-In distances (2.72 and 2.69 A) relative to d(In-In) in the parents, presumably because of relativistic contractions with Au. Generalities about such centered prismatic building blocks and their condensation modes in these and related phases are described. Band structure calculations (EHTB) demonstrate that the two compounds are metallic, which is confirmed by measurements of the resistivity of 1 and the magnetic susceptibilities of both.  相似文献   

9.
A series of quaternary lanthanide halide cluster compounds ALa(6)I(12)Z with transition metal interstitials (principally Os) and alkali or alkaline-earth metal cations (A = Na, Mg, Ca, Sr) have been synthesized by high temperature solid state techniques. The compounds were structurally characterized by single crystal and powder X-ray diffraction methods. The new compounds are isotypic (R3, Z = 3) with rhombohedral R(7)X(12)Z (R = Sc, Y, La-Lu; X = Cl, Br, I; Z = transition or main group element) and contain nominally octahedral R(6)X(12) units centered by interstitial Z. Here, the cation (A) rather than the seventh R occupies the isolated position between clusters along c as A(x)R(1-x) with 0 < x 相似文献   

10.
New molybdenum(VI) nitride oxides were synthesised by the reaction of strontium nitride and calcium nitride with molybdenum foil at high temperature in sealed stainless steel crucibles. The reactions yielded single crystalline products determined by X-ray diffraction to form complex structures in the triclinic space group P1(no. 2). The mixed alkaline earth compounds with composition Ca38Sr13[MoN4]12N8O3 and Ca36Sr15[MoN4]12N8O3 are isostructural with the quaternary nitride oxides Sr51[WN4]12N8O3 and Ca51[WN4]12N8O3. The structures contain isolated [MoN4](6-) tetrahedra, partially disordered alkaline earth cations and an ordered sublattice of N(3-) and O(2-) anions. Oxide anions are coordinated only to the alkaline earth metals. The title compounds are the first mixed alkaline earth metal nitride oxides.  相似文献   

11.
The dimeric η(6)-hexamethylbenzene ruthenium(II) triazole compounds of formulation [{(η(6)-C(6)Me(6))Ru(N(3)C(2)(CO(2)R)(2))}(2)(μC(2)O(4))] have been synthesized by 1,3-diploar cycloadditions of coordinated azido compound [{(η(6)-C(6)Me(6))Ru(L(1))N(3)}] (1) with substituted acetylene, RO(2)CC(2)CO(2)R via unexpected oxidation of the coordinated ligand to oxalate (where; L(1) = 5-hydroxy-2-(hydroxymethyl)-4-pyrone; R = Me, 3 or Et, 4). In contrast, a similar 1,3-dipolar cycloaddition reaction of [{(η(6)-C(6)Me(6))Ru(L(2))N(3)}] (2) (where; L(2) = tropolone) with acetylene yielded the monomeric triazole compound [(η(6)-C(6)Me(6))Ru(L(2)){N(3)C(2)(CO(2)R)(2)}] (where; R = Me, 5; Et, 6). The compounds were characterized by spectroscopy and the structures of representative compounds 4 and 6 have been determined by single crystal X-ray diffraction. The two ruthenium centres in the compound 4, are linked by a tetra-dentate oxalate group. Both compounds, 4 and 6, crystallized in a triclinic space group P-1.  相似文献   

12.
We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.  相似文献   

13.
2-Aminomethylaniline was converted into the N,N'-bis(pivaloyl) (1) or -bis(trimethylsilyl) (2) derivative, using 2 Bu(t)C(O)Cl or 2 Me(3)SiCl (≡ RCl), respectively, with 2 NEt(3), or for 2 from successively using 2 LiBu(n) and 2 RCl. N,N'-Bis(neopentyl)-2-(aminomethyl)aniline (3) was prepared by LiAlH(4) reduction of 1. From 2 or 3 and 2 LiBu(n), the appropriate dilitiodiamide {2-[{N(Li)R}C(6)H(4){CH(2)N(Li)R}(L)](2) (L absent, 4a; or L = THF, 4b) or the N,N'-bis(neopentyl) analogue (5) of 4a was prepared. Treatment of 4a with 2 Bu(t)NC, 2 (2,6-Me(2)C(6)H(3)NC) or 2 Bu(t)CN (≡ L') furnished the corresponding adduct [2-N{Li(L')R}C(6)H(4){CH(2)N(Li)R}] (4c, 4d or 4e, respectively), whereas 4b with 2 PhCN afforded [2-{N(Li)R}C(6)H(4){CH(2)C(Ph) = NLi(NCPh)}] (6). The dimeric bis(amido)stannylene [Sn{N(R)C(6)H(4)(CH(2)NR)-1,2}](2) (7) was obtained from 4a and [Sn(μ-Cl)NR(2)](2), while the N,N'-bis(neopentyl) analogue 8 of 7 was similarly derived from [Sn(μ-Cl)NR(2)](2) and 5. Reaction of two equivalents of the diamine 2 with Pb(NR(2))(2) yielded 9, the lead homologue of 7. Oxidative addition of sulfur to 7 led to the dimeric bis(diamido)tin sulfide 10. Treatment of 2 successively with 'MgBu(2)' in C(5)H(12) and THF gave [Mg{N(R)C(6)H(4)(CH(2)NR)}(THF)](2) (11a), which by displacement of its THF by an equivalent portion of Bu(t)CN or PhCN produced [Mg{N(R)C(6)H(4)(CH(2)NR)}(CNR')(n)] [R' = Bu(t), n = 1 (11b); R' = Ph, n = 2 (11c)]. The Ca (12), Sr (13) or Ba (14) analogues of the Mg compound 11a were isolated from 2 and either the appropriate compound M(NR(2))(2) (M = Ca, Sr, Ba), or successively 2 LiBu(n) and 2 M(OTos)(2). The new compounds 1-14 were characterized by microanalysis (C, H, N; not for 1, 2, 3, 5), solution NMR spectra, ν(max) (C≡N) (IR for 4c, 4d, 4e, 6, 11b, 11c), selected EI-MS peaks (for 1, 2, 3, 7, 8, 9, 10), and single crystal X-ray diffraction (for 4a, 4b, 11a).  相似文献   

14.
Oxidative insertion of the In(I) 'carbene analogues', [In{N(Dipp)C(Me))2CH] (Ar = Dipp = 2,6-iPr2C6H3; Ar = Mes = 2,4,6-Me3C6H2) into the Fe-I bond of [CpFe(CO)2I] occurred cleanly and under mild conditions to yield the In(III) compounds [CH((CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] and [CH( (CH3)2CN-2,4,6-Me3C6H3)2In(I)FeCp(CO)2], which have been fully characterised in solution and the solid state. Attempts to abstract the iodide anion from [CH( (CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] to form cationic species containing a coordinated indium diyl were unsuccessful and resulted in a complex mixture of products from which two ionic species were isolated. Neither cation was found to contain indium by X-ray crystallographic analysis. These observations were indicative of ill-defined decomposition pathways as have been noted by previous workers. A further attempt to form a cationic iron species containing a coordinated [In(N(Dipp)C(Me) )2CH] fragment resulted in oxidation of the iron centre from Fe(II) to Fe(III), with deposition of indium metal, and the isolation of a cationic Fe(III) beta-diketiminate complex.  相似文献   

15.
The following crystalline, X-ray-characterised heterometallic oligomeric diamides have been prepared in good yield under mild conditions in diethyl ether from the dilithio or disodio derivative of the N,N'-dineopentyl-1,2-diaminobenzene [{N(H)(CH2Bu(t))}2C6H4-1,2] (abbreviated as H2L):[Y(L)(mu-Cl)2Li(OEt2)2]2 (1), [Li(OEt2)2Li(mu2-Cl)4(mu3-Cl)2{Zr(L)}2]2 (2), [Zr(L)2(mu-Cl){Li(OEt2)2}(mu2-Cl)2Zr(L)] (3), [Ce{(mu-L)M}3(OEt2)(1/2)] (3M = Li(1.82)Na(1.18)) (4), [Ce{(mu-L)Na}3(OEt2)] (5) and [Ce{(mu-L)Na}3] (6). Compounds 1-3 were obtained from Li2(L) and YCl3 (the colourless 1) or ZrCl4 (the red 2 and 3), while the red 4 and 5 were isolated from CeCl3 and M2(L) (3M = Li(1.82)Na(1.18)) (4) or Na2(L) (5). Attempted oxidation of 5 with Br2 in hexane yielded the black 6. The ligand is N,N'-chelating to each of the d- or f-block metals in 1-6; and in 4-6 L is also acting as a bridge between Ce and the alkali metal, to which L is thus also chelating.  相似文献   

16.
A new ternary polar intermetallic, Ca(18)Li(5)In(25.07), was obtained from high-temperature reactions of the elements in welded Nb tubes. Its crystal structure, established by single-crystal X-ray diffraction, was found to crystallize in the orthorhombic space group Cmmm (No. 65). Unit cell parameters are a = 9.9151(6) A, b = 26.432(2) A, and c = 10.2116(6) A; Z = 2. The structure of Ca(18)Li(5)In(25.07) features two distinct types of indium anionic layers. An "electron-deficient" layer is made up of Li-centered In(12) icosahedra that are interconnected by bridging planar In(4) units and In atoms. A second In(3)(5-) layer is an electron-precise Zintl layer formed by fused four-, five-, and six-membered rings of three- and four-bonded indium atoms. The two distinct layers are alternately stacked and linked into a complex three-dimensional network. Vacancies are observed to occur only at the In(12) icosahedral and the bridging indium units within the "electron-deficient" layers. Magnetic property measurements indicate that Ca(18)Li(5)In(25.07) exhibits temperature-independent paramagnetism consistent with metallic behavior. Band structure calculations were performed to elucidate the role of defects and vacancies in the electronic structure of the electron-deficient "metallic" Zintl phase.  相似文献   

17.
The reactions of elemental indium and In(I)Br with the carbonyl-free organonickel complexes (eta(5)-C(5)H(5))(PR(3))Ni-Br (R = CH(3), C(6)H(5)) have been studied in some detail. Either redox reactions to yield the ionic products [(eta(5)-C(5)H(5))(PR(3))(2)Ni][InBr(4)] (2a,b) occurred or the Ni-In bound systems (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)) (3a) and [(eta(5)-C(5)H(5))(PPh(3))Ni](2)InBr (4) were obtained in good yields. The new compounds were characterized by elemental analysis, NMR, and mass spectrometry. A short Ni-In bond of 244.65(9) pm was found for 3a. Single crystal data for (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)).THF (3a): triclinic, P1 with a = 1124.9(3), b = 1353.2(4), c = 1476.4(4) pm, alpha = 94.74(2) degrees, beta = 101.78(2) degrees, gamma = 109.64(1) degrees, V = 2044(1) x 10(6) pm(3), Z = 2, R = 0.053 (R(w) = 0.063).  相似文献   

18.
A new rare earth metal Zintl phase, Eu(3)In(2)P(4), was synthesized by utilizing a metal flux method. The compound crystallizes in the orthorhombic space group Pnnm with the cell parameters a = 16.097(3) A, b = 6.6992(13) A, c = 4.2712(9) A, and Z = 2 (T = 90(2) K, R1 = 0.0159, wR2 = 0.0418 for all data). It is isostructural to Sr(3)In(2)P(4). The structure consists of tetrahedral dimers, [In(2)P(2)P(4/2)](6-), that form a one-dimensional chain along the c axis. Three europium atoms interact via a Eu-Eu distance of 3.7401(6) A to form a straight line triplet. Single-crystal magnetic measurements show anisotropy at 30 K and a magnetic transition at 14.5 K. High-temperature data give a positive Weiss constant, which suggests ferromagnetism, while the shape of susceptibility curves (chi vs T) suggests antiferromagnetism. Heat capacity shows a magnetic transition at 14.5 K that is suppressed with field. This compound is a semiconductor according to the temperature-dependent resistivity measurements with a room-temperature resistivity of 0.005(1) Omega m and E(g) = 0.452(4) eV. It shows negative magnetoresistance below the magnetic ordering temperature. The maximum magnetoresistance (Deltarho/rho(H)) is 30% at 2 K with H = 5 T.  相似文献   

19.
Cyclometalated aryl tetra- or trichlorido cyclopentadienyl tantalum complexes [TaXCl(3){C(6)H(4)(2-CH(2)NMe(2))-κ(2)C,N}] (X = Cl 1, η(5)-C(5)H(5)2, η(5)-C(5)H(4)(SiMe(3)) 3, η(5)-C(5)Me(5)4) containing a five-membered TaC(3)N chelate ring were synthesized by reaction of the TaXCl(4) (X = Cl, η(5)-C(5)H(5), η(5)-C(5)H(4)(SiMe(3)), η(5)-C(5)Me(5)) with the appropriate lithium aryl reagent [Li{C(6)H(4)(2-CH(2)NMe(2))}]. The reported complexes were studied by IR and NMR spectroscopy and the X-ray molecular structures of compounds 2, 3 and 4 were determined by diffraction methods. These compounds were theoretically analyzed by the DFT method and their structures were rationalized. The preferential coordination of the 2-{(dimethylamino)methyl}phenyl ligand was justified by an analysis of the molecular orbitals of the Ta(η(5)-C(5)H(5))Cl(3) and C(6)H(4)(2-CH(2)NMe(2)) fragments. In addition, the exchange pathways that account for the NMR equivalency of the Me(2)N- methyl groups and -CH(2)- hydrogen atoms of the coordinated C(6)H(4)(2-CH(2)NMe(2))-κ(2)C,N ligand were theoretically studied.  相似文献   

20.
Three new strontium vanadium borophosphate compounds, (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O (Sr-VBPO1) (1), (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O (Sr-VBPO2) (2), and (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4][V2P2BO12]6 10H2O (Sr-VBPO3) (3) have been synthesized by interdiffusion methods in the presence of diprotonated ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane. Compound 1 has a chain structure, whereas 2 and 3 have layered structures with different arrangements of [(NH4) [symbol: see text] [V2P2BO12]6] cluster anions within the layers. Crystal data: (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 21.552(1) A, b = 27.694(2) A, c = 20.552(1) A, beta = 113.650(1) degrees, Z = 4; (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O, monoclinic, space group I2/m (no. 12), a = 15.7618(9) A, b = 16.4821(9) A, c = 21.112(1) A, beta = 107.473(1) degrees, Z = 2; (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4] [V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 39.364(2) A, b = 14.0924(7) A, c = 25.342(1) A, beta = 121.259(1) degrees, Z = 4. The differences in the three structures arise from the different steric requirements of the amines that lead to different amine-cluster hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号